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Yield -Area Analysis: Part II-Effects of Photomask 
Alignment Errors on Zero Yield Loci 

C. S. Kim and W. E. Ham 

RCA Laboratories, Princeton, N.J. 08540 

Abstract-A relatively detailed analysis is made of the effects of mask alignment error on 
the resulting yield pattern of LSI circuits. It is clearly shown that alignment errors 
produce certain characteristic types of yield distribution. The sum of all of the 
common alignment errors-translational, theta, thermal and runout-can be 
combined to produce fatal errors even though the individual errors are within 
specification. Excellent agreement was found between actual production circuit 
yield distributions and the results of the combined analysis. 

1. Introduction 

This paper is the second part of a multipart series concerning the spatial 
distribution of yield of LSI circuits across wafers. Part I of this series' 
dealt with the basic causes of incomplete usage of the wafer area for yield 
and showed how zero -yield loci can be drawn that divide the wafer into 
regions where good circuits are and are not found. As discussed in that 
paper, one of the more common causes of a nonunity Area Usage Factor 
(AUF) is the imperfect alignment of photomask to images already on 
the wafer. It is the intent of this paper to describe the types of zero yield 
loci that result from these alignment errors, so that one can recognize 
potential alignment problems from the shape and location of the zero 
yield loci. Since photomask alignment errors are usually quasicontinuous 
they satisfy the definition for a parameter given in Part I. 

Some analytical discussion concerning photomask registration or 
alignment errors has appeared in the literature recently.2-5 The dis- 
cussion in this paper is aimed specifically at the zero yield loci resulting 
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from alignment errors. The registration accuracy can be handled with 
some analytical elegance in the general case, but the results obtained 
apply to yield loci only if the registration errors are the limiting para- 
metric features. The results to be discussed here can help to determine 
if a particular type of alignment error might be causing the zero yield 
loci. 

The possible alignment errors are divided into two major categories, 
namely, operator -induced errors and errors resulting from size incom- 
patibility. Simple translational and rotational errors fall into the category 
of operator -induced error, whereas run -out, thermal mismatch, and 
dimensional instability problems fall into the category of size incom- 
patability. An analytical model for alignment error is derived that takes 
into account the sum of all these error components. 

The constant -alignment -error loci obtained from this model show how 
alignment errors can produce AUF's less than unity. The contribution 
from the choice of alignment keys and varying operator sensitivity to 
the alignment error is briefly discussed. 

As part of the final discussion, a sample case is reviewed where all the 
individual error components are within the limits of reasonable speci- 
fication, but the resulting error from the sum of all these components 
has a magnitude easily large enough to cause a low AUF. 

2. Photomask Alignment Error Analysis 

Typically, the two different levels of images are aligned using two loca- 
tions viewed simultaneously through a split view microscope. The 
midpoint of the line connecting the two spots usually lies close to the 
center of a wafer and therefore, to the center of the mounting chuck. In 
other words, one usually mounts a wafer concentric to the round 
mounting chuck and the two alignment spots are chosen at equal dis- 
tance from the center of the wafer, even though such conditions are not 
absolutely necessary for proper alignment. 

In the following discussion, the origin of the coordinate system is 

chosen to be the midpoint of the line connecting the two alignment spots 
as shown in Fig. 1. The choice is for convenience and is irrelevant to the 
accuracy of the model. 

2.1 Simple Alignment Error 

This type of misalignment can be divided into two categories, transla- 
tional and rotational, for which we can write, respectively, 

-Trans = Cxx + CO) [1] 
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Fig. 1-Definition of the error components due to theta and thermal errors and definition 
of coordinate origin. 
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¡rot = rde6 = rde(-sin H + cos 99) 

= ydex + xdo9, [2] 

where Cx, Cy are the x and y components of translational error, de is the 
rotational error in radians, and z, 9, P, 6 are the unit vectors. 

A direct translational misalignment alone would generally cause loss 
of the entire wafer, not just a partial area of the wafer. On the other hand, 
a pure rotational mismatch between the mask and the wafer around the 
wafer center would cause loss of the outer portion of the wafer. When 
the rotational error alone is considered, only the point on the wafer in- 
tersecting the rotational axis would have exact alignment. 

2.2 Size Incompatability 

The other type of misalignment that may cause local areas of zero yield 
is nonidentical sizes of masks and images previously printed on wafers. 
This can be caused by many different phenomena, such as nonrepro- 
ducible step and repeat distances between masks, different temperatures 
of the mask between the first and second exposures, changes in the wafer 
size between exposures, changes in the wafer temperature due to dif- 
ferent optical absorption properties during exposure, and changes in the 
pressure applied during exposure to warped wafers due to a change in 
the warpage. 
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The alignment errors caused by the size incompatibility can generally 
be divided into two categories. One we shall call generically "runout." 
The second category is expansion. In common usage the runout refers 
to the irregularities in the step -and -repeat distances. These irregularities 
may arise from step -and -repeat machine movement errors, roundoff 
errors in digitizing the images, or thermal instability during the mask 
fabrication. In the general case, runout errors between two levels can 
have a nonlinear dependence on positions. For example the roundoff 
errors introduced by digitization would result in errors that are a periodic 
function of position. A recent investigation by HamB,s and others3'4 shows 
that the runout can be a highly nonmonotonic function of position. 
However, for reasons of simplicity the runout is assumed to be a simple 
linear function of position as given by: 

- runout = 1 xxx + 13yY9 [3] 

Expansion because of temperature differences between the mask and 
wafer or from temperature or dimensional changes occurring between 
the time of first level printing and second level printing would also result 
in a monotonic runout type of error. The distance of an arbitrary point 
on a wafer or mask from the origin will vary with temperature according 
to the linear equations; 

rm = rmo(1 + am..1Tm) for the mask [4] 

r,,, = r,,,o(1 + a,,,OTu,) for the wafer [5] 

The a's are the linear expansion coefficients, rmo and rw. are the original 
radii at a reference temperature, Tret, and ..STm and OT,,, are the dif- 
ferences between Tre f and the mask and wafer temperature, respectively. 
If we assume an isothermal mask and an isothermal wafer (not neces- 
sarily the same temperature) at the first exposure and that the tem- 
perature of each at this time is its reference temperature, then .1Tm and 
TW = 0, and rm, and ru,, = ro. This radius is arbitrary. At the second 
exposure at a nominal distance of ro from the reference point (the point 
of exact match for that alignment) a change of Sr = rm2 - r,,,2 will be 
given by; 

Jr 
= a, AT, - a,o..5To if r,,2 - r1,2 « ro, [6] 

ro 

as is usually the case. Notice that if -1Tm2 = ATw2, then the difference 
in the thermal expansion coefficients between the mask and the wafers 
alone control the error. 

The thermal expansion problem is most serious when the mask tem- 
perature and the wafer temperature vary in the opposite directions. 
When the mask temperature and the wafer temperature are equalized, 
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the errors due to ambient temperature fluctuations can be minimized 
by matching the expansion coefficients of the mask to that of the sub- 
strate. 

Fig. 2 shows the expected thermal error for several different types of 
materials commonly used for masks and substrates as a function of 
temperature difference. It is apparent that severe yield loss could be 
occurring for practically attainable temperature differences. However 
it would require approximately 8°C change in ambient temperature to 
cause the sapphire soda -lime system to fail 1.25-µm criteria for a 7.6 -cm 
wafer, provided the mask and the wafers were both at the same tem- 
perature. An ambient temperature change of this magnitude would 
rarely be experienced in practice. Nonetheless thermal errors add to 
those present from other sources and can be the critical difference be- 
tween success and failure. 

The error arising from the size incompatibility is similar to the rota- 
tional error in that it is proportional to the distance from the origin, but 
the two error vectors are orthogonal to each other. The error component 
caused by the thermal mismatch can be written 

,Ithermal = prt = p(r cos 6z + r sin 0.9) 

= pxz + py.9 [71 

n 
o_ 

K 

ALIGNMENT 
TOLERANCE LIMIT 
AT 7.5 em EDGE 
I.25µ \ 59' 
3.75 c m\ Py0 

2 4 6 8 

AT PC) 
10 12 

Fig. 2-Linear expansion with temperature for some materials commonly used foe masks 
and substrates. 
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where p =fro is a thermal mismatch parameter as defined in Eq. 

[6]. 

2.3 Equal Error Contour (Loci) 

The total alignment error is the vector sum of the four error components 
described by Eqs. [1], [2], [3], and [7]. 

IAI2= IxI2+ I yI2 

= 1Cx + (ax + p)x - dey12 + [Cy + (13y + p)y + dex12. [8] 

From Eq. [8] it is clear that in a realistic situation, a unique point 
(xo,ya) always exists where both of the bracketed terms disappear. At 
this point the total error is zero. In other words, there exists a point where 
the two levels match exactly. We call this point the Point of Exact Match 
(PEM). The coordinates of PEM can be obtained by solving the following 
equations for x and y: 

Cx+(p+13x)x-dgy=0 
Cy+(p+(3y)y+dex=0, 

from which one obtains, 
(p + 13y)Cx + Cyde xa=- 

(P+uix)(P+l3y)(1e2 
-(p + /3 )Cy+ Cxde 

[111 Yo - 
(p + Mx)(p + 0y) + d02 

When translational errors are absent (in other words, Cx = Cy = 0), 
the PEM lies at the origin of our coordinate system. The origin was as- 
sumed to coincide with the midpoint of the line connecting the two 
alignment spots. If all the alignment errors, other than the translational 
error, were ideally compromised during the alignment process, then the 
total error at the midpoint will indeed be zero. 

In general, if the thermal, rotational, and runout terms are small 
compared to the translational term, one must move a considerable dis- 
tance from the origin to find the PEM. In fact, the PEM may lie outside 
the wafer, which simply means its distance from the origin must be quite 
large in order to "make up" the translation error. On the other hand when 
the translation errors are small, appreciable alignment errors will only 
occur at a considerable distance from the PEM. 

Rearranging Eq. [8] we get, 

.11 =Cx2+Cy2+x2[(ix+p)2+de2] 
+ x[2Cx.(/3x + p) + 2Cyd9] 

+ y2[(fy + p)2 + de2] + y[2Cy(i3y + p) + 2Cxde] 

+ xy[2de(l3y - /3x)1 

=axe+bxy+cy2+dx+ey+/ 112] 

191 

[10] 
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The xy cross product term can be eliminated by performing a rota- 
tional transformation of the coordinate by an angle 0 which is given by 
the following expression (the detailed algebra can be found in Ref. 
[7]): 

-2d0 
[13] =2 tan-1 l 

/3x+/3y+2PJ 

When /3x = /3y, 4) always equals zero even though it may not be obvious 
from Eq. [13]. 

The new X- Y coordinate obtained by rotating the x -y coordinate by 
0) given in Eq. [13] enables one to rewrite Eq. [12] as 

A(X - X0)2 + C(Y - Y0)2 = [ JI 2, [14] 

where, 

A =a cos 02 + b sin 0 cos 0 + c sin 02 

C= a sin 02 -b sin 0 cos 0. + c cos 02 

and, (X0,Yo) is the PEM (x0,y0) expressed in the new X -Y coordinates. 
Eq. [14] defines the loci of constant error. In general, it is an ellipse with 
coordinate axis rotated by 0 and translated by (X°,Yo) from the original 
coordinate origin at the center of the wafer. Eq. [14] will also describe 
the boundary between yielding and nonyielding areas if the value of Al[ 

would cause a particular circuit to exceed its defined parametric limits 
or to cease operation. 

3. Discussion 

3.1 Specific Case Study 

Let us consider a specific example where realistic numbers are used to 
determine the constant error loci. We will assume the following condi- 
tions which apply to a typical manufacturing operation. The alignment 
keys are located 5 cm apart and have 2.5µm clearance between two levels, 
as shown in Fig. 3. After the image is printed, a 0.825 µm shift in the 
alignment, as shown in the same figure, is assumed to be an acceptable 
error. Furthermore the mask and wafer are assumed to be at equal 
temperatures at the time of exposure, but the ambient temperatures has 
changed by +1°C from the previous exposure. The mask material is 

taken as low expansion glass and the wafer is sapphire. The mask runout 
is 1.25 µm over 7.5 cm distance. 

With the above assumptions the following parameters can be de- 
rived: 

de = 0.825 µm/5 cm = 1.65 x 10-5 rad 
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ALIGNMENT 

j- 3.33p. 

ACTUAL 
ACCEPTABLE 
ALIGNMENT 

Fig. 3-Conditions used in specific case study. 

p=(3.7x10-6/°C-5X10-6/°C)x1°C=-1.4x10-6 
13x=,6y=1.25µm/7.5cm=1.67X 10-5 

Cx=Cy=0.825µm 
Since Rx = 13y, it is not necessary to rotate the axis, and = 0. From Eq. 
1121 we have, 

a=c=5.06X10-to, 
and from Eqs. [10] and [11] we have, 

x° = -5.18 cm 

yo = -0.195 cm. 

Since A = C in Eq. 1141, the locus is a circle centered at (x°,y°) whose 
1 

radius depends on the error criteria I.SI. Fig. 4 shows the resulting loci 
for the different values of I _SI, 1.23 pm, 1.875 pm, and 2.5 pm. If a circuit 
is designed with 1.25 -pm alignment tolerance in mind, it is perfectly clear 
that major portions of the wafer will not yield operating circuits. Thus 
the AUF will be considerably smaller than unity. In this specific case, 
the circuit design rules must allow for an alignment tolerance of 2.5 pm 
in order for the entire area of the wafer to be utilized. Excellent agree- 
ment with these results was found under actual conditions. Fig. 3 of Part 
1 i shows results from wafers processed under the conditions assumed 
above. 
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IAI=2.5µ 

IAI1.875µ 

IAI1.25 µ 

/ 
I 

x l 
PEM 1 

(-5.18cm,-0.196cm) \ 
\ 

WAFER - 
Fig. 4-The constant -alignment -error loci discussed in the specific case study. 

3.2 General Discussion 

Once the quality of alignment machine and the associated process is 
fixed, the operator skill, positioning of alignment keys, and alignment 
key design itself are the only causes of rotational and translational error 
left for improvement. Frequently, alignment keys are not optimally 
designed for human use. The clearance in alignment key is typically 
limited to 2.5µm by the optics used. This will actually provide a practical 
window of perhaps a third of the clearance, i.e., 0.8µm. 

With the built-in alignment error possible from the keys, e, it is easy 
to see that the spacing between the alignment spots on the wafer surface 
has a first -order effect on the rotational error actually obtained. As- 
suming the imperfect alignment key alone resulted in a rotational error, 
the error, de, can be written as 2e/S, where S is the spacing of the align- 
ment spots. When we consider this rotational error and thermal mis- 
match only, the resulting constant error loci will be concentric circles 
with their PEM located at the center of the wafer. With a known, and 
assuming that mask and wafer are at equal temperature but that the 
ambient temperature changes by .1T, the radius around the PEM for 
the constant error loci becomes 

r= I°I 

/ 

1151 

(2e 
2 

\am - aw)2áT2 + 
\ S / 
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This function is plotted in Fig. 5 for the specific case of I - I = 1.25µm. 
We also note the relatively obvious result that with less rotational error 
due to wider separation of alignment spots, a wider temperature dif- 
ference is tolerable. Also, the use of masks matched in thermal expansion 
to the wafers can nearly eliminate the thermal problems. 

So far only the interaction between two levels has been considered. 
When more than two levels are involved, one can readily deduce that, 
to a first order approximation, the yielding area will have a convex 
contour resulting from superimposed ellipses. For example, when three 
alignments are involved, the yielding area might have the shape shown 
in Fig. 6. In this case, only the area common to all three will give nonzero 
yield. 

It is important to note that the analysis carried out so far has assumed 
that only the total vector sum of the error matters, not the individual 
x or y components. If the entire circuit is laid out with orthogonal lines 
only, then the individual x and y components of the alignment errors 
will determine the constant error loci. One can deduce from Eq. [8] that 
such loci will be, in general, a set of parallelograms centered at (xa,yo). 

12 

10 
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I-. 
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\________.1 
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1- 
1 
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Fig. 5-Plot of Eq. [ 15] for different mask materials and separations of alignment spots. 
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x 
PEM1 

Fig. 6-Zero-yield loci resulting from the superposition of three different alignments. 

4. Conclusions 

The following conclusions are drawn from the analysis and discussions 
of alignment errors presented in this paper: 
(1) The mathematical analysis presented here proves that the photo - 
mask alignment error can result in a poor wafer area usage. 
(2) It is quite possible and likely that the various contributions to mask 
alignment error can add up to a substantial reduction in the area of the 
wafer used for yield, even though the specifications for the individual 
errors are satisfied by the circuit design. 
(3) For any mask alignment that has some component of rotational, 
thermal, or monotonic runout error, a point of exact match (PEM) exists. 
This point may lie well off the wafer. 
(4) Mask alignment errors, in general, could cause zero yield loci that 
have straight or convex edges and that are randomly oriented on the 
wafer. 
(5) Considerable error in alignment may be experienced because of 
improper temperature control during photoresist exposure. 
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Note Added in Proof 

During the preparation of this manuscript, a paper appeared9 that also 

discusses some of the features discussed in this paper. Although some 

of the results are similar, the present paper is focused on the detection 
of possible alignment incompat bility from the distribution of circuits 
while Ref. 19] deals with techniques used to determine the error com- 

ponents. There is no important disagreement between the results of the 
two papers. 
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Near and Far -Field Analytical Approximations for 
the Fundamental Mode in Symmetric Waveguide 
DH Lasers* 

Dan Botez 

RCA Laboratories, Princeton, N.J. 08540 

Abstract-Analytical approximations of near- and far -field parameters characterizing the 
TE0 mode propagation in symmetric double-heterojunction waveguides are de- 
scribed. By using trigonometric function approximations, the mode phase shift 
at the dielectric interface is estimated within a few percent over the whole range 
of D (normalized waveguide thickness) variation; as a resuft, approximations within 
1% are obtained for: the field intensity in the waveguide, the effective waveguide 
thickness, and the effective waveguide index. Field intensity maxima and effective 
thickness minima are found to occur for D - 1.74. The physical significance of 
the approximated parameters to device behavior is discussed. Simple approxi- 
mation formulae for the radiation confinement factor, ro, of the TE0 mode (sym- 
metric and asymmetric guide) and TM0 mode (symmetric guide) are also given. 
Gaussian approximations are used for estimating near- and far -field intensity 
profiles over intermediate D ranges (1.8 < D < 6 and 1.5 < D < 6, respectively) 
and for An/n _< 10%. The laser beamwidth in the transverse direction, 01, is 

obtained with 4% maximum error by using a Gaussian approximation for 1.5 < 
D < 5, and a corrected asymptotic formula for 0 < D < 1.5. An accurate analytic 
approximation is also obtained for the laser transverse far -field pattern in the 
non -Gaussian region 0 < D < 1.5, 01 < 40°. 

1. Introduction 

Semiconductor lasers of the double-heterojunction (DH) type have been 
extensively analyzed1-3 due both to scientific interest as well as to their 
utility in a wide range of applications. A DH laser is usually represented 
as a three -layer slab dielectric waveguide (see Fig. 1) composed of an 

This research was sponsored in part by the U.S. Army Research Office, Durham, N.C., and in part 
by RCA Laboratories, Princeton, N.J. 
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Fig. 1-Schematic representation of the fundamental transverse mode in symmetric dou- 

ble-heterojunction waveguides. The refractive indices of the active layer and 

cladding layers are n1 and n2, respectively, with n1 > n2. The effective guide 

thickness den = d(1 + 2/it'). 

active layer of refractive index n1 and thickness d, sandwiched between 
passive cladding layers of refractive indices n2 and n3, respectively, which 
are less than n1 (at the lasing wavelength). For symmetric structures (i.e., 
n2 = n3), the waveguide has zero cut-off thickness for the fundamental 
transverse mode.4,5 In practice, the active layer thickness d is chosen such 
that only the fundamental mode lases.1,2 Also the lasing mode is found 
in most instances to he TE polarized. Thus the symmetric DH operating 
in the fundamental TE0 mode is currently the most widely used laser 
structure for optical communications via fibers. For this reason we chose 
to restrict most of our analysis to the TE0 mode. We have reported 
previously6 on beamwidth approximations for these structures. In this 
paper we present a complete description of the fundamental TE0 mode 
(near -fields and far -fields) with the help of accurate analytical approx- 
imations. The approximations are based both on mathematical prop- 
erties of certain functions as well as on physical trends in the mode be- 
havior. 

The analytical approximations that are employed, while covering wide 
ranges of parameter variation, have different forms over different in- 
tervals rather than a single form resulting from an asymptote combi- 
nation.7-9 For this reason we shall refer to our approximation formulae 
as analytical approximations over intervals (the number of intervals for 
a given function does not exceed two). Similar approximation methods 
have been used previously for Fermi energy calculations.") 

The first part of the paper is concerned with the mode characterization 
in the near -field. By using approximations for the mode phase shift at 
the dielectric interface, n, various parameters directly dependent on t' 
can be accurately determined (e.g., the effective waveguide index). A 

Gaussian approximation is obtained for near -field distributions over the 
range 1.8 < D < 6 (D = (2r/X)d/nY - n2 is the normalized guide thick- 
ness4). In the second part, a Gaussian approximation is used for de- 
scribing fields in the far -field over the range 1.5 < D < 6. The Gaussian 
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approximation for this interval, as well as an asymptotic approximation 
for the range 0 < D < 1.5, allows a very precise (within 4%) computation 
of the beam angular spread in the plane perpendicular to the junction, 
B1 (fwhp). Relatively simple expressions for the far -field intensity 
patterns are also presented. 

2. Mode Propagation in the Waveguide 

The propagation of the TE0 mode in the symmetric waveguide of Fig. 
1 is characterized by the following variation of the electric field:4 

Ey(x,z) = E0[cos(gx)]e-OZ for Ix I < d/2 
Ey(x,z) = Eo[cos(gd/2) exp[-p(Ix I - d/2)][e-itiz 

for lxI > d/2. [1] 

Here q and p are "transverse propagation constants" in the active layer 
and cladding layer, respectively, 13 is the propagation constant along the 
z direction, and E0 is the amplitude of the Ey(x,z) field component. The 
field time dependence is omitted. After applying the proper boundary 
conditions one//obtains the mode equation,5 

'tan 12) = 0', [2a] 

where ' = qd and >G' = pd; and ¢' are related by the condition 
(27rd1) 2D2, 

[2b] 

where D is the normalized waveguide thickness.4 For the fundamental 
mode, the quantity is identical to the phase shift suffered by the guided 
wave at the dielectric interface upon total internal reflection." For this 
reason we shall refer to lk as phase shift at dielectric interface. Eqs. [2a] 
and 12b1 reduce to 

- D. 

(4') 

[2c] 

cos 
2 

All the information on a given structure is obtained in D, and thus Eq. 
[2c] unequivocally determines the phase factor 1,G characteristic of the 
TE0 mode propagation in the structure. In Fig. 1 we also show the electric 
field variation with x: the electric field follows a cos[('/d)x] dependence 
in the active layer, and an exponential exp[-(>G'/d)(Ix I - d/2)] depen- 
dence in the cladding. The electric field amplitude E0 is obtained by 
normalizing the fields to unity: 

fm Ey(x,z)Ey(x,z)dx = 1. [3a] 
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The result is 

1 1 2 -V 3b E° 
Yd (0.5 + 1/t,') V0.5d + 1/p deft [ ] 

where deft, the effective guide width, is the sum of d and the penetration 
depths (1/p for each cladding layer), as shown in Fig. 1. The electric field 

variation, as shown in Fig. 1, is an exact description of the mode in the 
guide. Strictly speaking, it is not identical to the laser near -field distri- 
bution, due to incident power coupling to unguided radiation modes at 
the laser facet.12,13 However, this difference has been shown to be neg- 
ligible in semiconductor lasers,12.13 and thus we shall consider the field 
description given by Eqs. [1] as applying to the near -field distribution 
as well. 

Another useful parameter in describing the dielectric waveguide is 

the effective waveguide index N.11,14 

2 

N 14a] 

11 
which for small index differences (i.e., n1 - n2 «n,) becomes 

2 

a.N n2 + 1 - (ni - n2). [4b] 

For a laser, the presence of gain in the active layer introduces changes 
in the imaginary part of the dielectric constant;15 however, for the 
transverse direction, we shall neglect the gain contribution to the bulk 
index of the active layer, since even the largest estimates for that con- 
tribution15,16 are much smaller than _In = n 1 - n2 of a practical de- 
vice. 

3. Approximations for the Guided Mode Propagation 

As seen from the previous section, 4 is the crucial parameter in deter- 
mining the mode propagation in the guide. For this reason we first 
concentrate on finding a simple yet suitable approximation for 1,G. Near 
the cut-off value (in this case D = 0) we use the property of the cosine 
function of being very well approximated over a relatively wide range 
by the first two terms of its power series expansion. For instance in ap- 
proximating cosO by 1 - (02/2) over the range 0 < 9 < 44 the relative 
error introduced is at most 2.2%. With this approximation Eq. [2c] be- 
comes 

D- 
cos 

(12) 
1 -8 

580 RCA Review Vol. 39 December 1978 



DH LASERS 

with the solution for ': 
V1 + (D2/2) - 1 =4 

D 

By using Eq. [2c] it can be shown 
cost'/2 [i.e. ¿ (cos}'/2) = cos4'/2 - (1 

for ' is 

Dl1cos 2) 

1 + (D2/2) 
cos - 

2 

0 < D < ,r. [5] 

that for small errors in computing 
- (¢2/8)) « cos02] the relative error 

[6] 

Thus the error introduced by using cosO ^ 1- (02/2) is further reduced 
by the term 1/V1 + (D2/2) . We find that ' can be approximated by Eq. 
[5] within 2% for D values up to ir (the cut-off value for the first order 
mode). For instance, in an (AIGa)As DH guide with On = 0.22 and A = 
0.9 µm, the case D = ir corresponds to d = 0.36µm. In general all regions 
of practical interest in cw diode lasers are within the 0 < D < it range.1,2 
Although for D = ir the first order transverse mode could be excited, the 
fundamental mode is the only one that is observed to lase, most probably 
due to the difference in mode facet reflkctivity.1 Lasing in the funda- 
mental transverse mode was found to occur up to values of D between 
5 and 7 (e.g., up to d = 0.6-0.7 µm for (AlGa)As lasers with On = 0.22 and 

= 0.9 µm1). For these reasons we also seek approximations for in the 
ir < D < 7 range. We start far from cut-off (i.e., 4i = ir). For V. = ir - E, we 
obtain 

ir - E it -E a -E 2¢ 
[7] D= -_ 

cos 
1- 

sin 
-2 2 --111 

As the D value is reduced from oz. to ir the error for the approximation 
sin(E/2) = E/2 can be as high as 7%. However, just as in the near -cut-off 
case, it can be shown that the actual error in computing 1,G from Eq. [2c] 
is less, since 

AI,/ 
A /sin 

2/ 

,y 2+D 1 

sin - 
2 

From Eq. [7], the expression for the ' approximation far from cut-off 

[8] 

is 

irD 
2+D' a<D<CO [9] 
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with a maximum error of 2.7% at D = a. By using different methods, 
Reinhart et al17 as well as Marcuse5 have obtained virtually the same 
expression for the far -from -cut-off approximation. The ¢ versus D plot 
(0 < D < 7) together with the two approximations, are shown in Fig. 2a. 
The 1P approximation formulae (i.e., Eqs. 151 and 191) are listed in Table 
1, which is a summary of the approximations used for all of the near- and 
far -field TE0 mode parameters studied here, together with a previously 
reported9 analytical approximation for the TEo radiation confinement 
factor, I'o.17-20 

With the help of the ' approximations several parameters describing 
the mode propagation can be accurately determined. Figs. 2b -2d show 
the variation of three such parameters: the normalized peak field in- 
tensity in the guide, Eómax, the effective waveguide thickness deft, and 
the effective waveguide index N. For these calculations, Al Ga1_xAs 
structures with Jn = 0.1, 0.22, and 0.34 and n1 = 3.6 are considered. 

The normalized field intensity in the guide can he used in calculating 
the peak field intensity at the facet1.21 

2 oPo5 
Eómax,/acct Eo 10 

nl(1 - R) cm 

no (2Po) (112[10] 
n,(1 - R) dei1 

where Po is the average power emitted per unit length expressed in 
mW/um, no = 1207r is the vacuum wave impedance, and R is the power 
reflection coefficient. It is interesting to notice from the last term in Eq. 
[ 10] that for the maximum field intensity at the facet, the power density 
per unit area is twice the average value usually considered for a laser (i.e., 
Po/deft). One can use Eq. POI o] to estimate laser degradation and/or cat- 
astrophic facet damage levels.' Fig. 2b shows that for all structures Eómax 

has a maximum around D = 1.74, which thus should be the worst place 
for high power laser operation (e.g., for a structure with ..5n = 0.22, the 
case D = 1.74 corresponds to d = 0.2 µm). This maximum in field in- 
tensity also corresponds to a 60% ratio of the energy propagating in the 
active layer versus the total mode energy (i.e., r0 - 0.6). The approxi- 
mations shown in Fig. 2b for Egmax have a maximum error of 0.7%. Very 
similar accuracy is obtained in calculating deft, the effective waveguide 
width (Fig. 2c). As expected, the minima of the deft curves occur for D 
= 1.74. The effective width is an important parameter when energy ex- 
change is considered14, and also is a measure of the degree of light con- 
finement to the active layer. 

The effective index N is shown in Fig. 2d. Maximum approximation 
errors (i.e., at D = ir) amount to only 3 X 10-3 for Jn = 0.22. In the ex- 
pression for N, the factor 1 - 02/D2 (sometimes called the normalized 

z 
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+rD 
2+D 

4%A+( 02/ 2)-1 

4' 2n. -D -d( 2 
) nÍ-nz 

cos (-2) 

EXACT SOLUTION ---- APPROXIMATIONS 

D 

(a) 

d (0.5+ ) 

D sin (z ) 
EXACT SOLUTION 

- WITH y APPROXIMATIONS 

D 

(b) 

Fig. 2-The variation with respect to the normalized waveguide thickness D 
(27r/ñ)dn1 -nz of the exact solutions (solid curves) and approximations (dashed 
curves) for: (a) ;G, the mode phase shift at the dielectric interface upon total internal 
reflection; (b) Elma.) the maximum field intensity in the guide for the case when 
the fields have been normalized to unity (Eq. [3a]); (continued) 
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3 
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Fig. 2 (continued) (c) der,, the effective waveguide thickness (for comparison we plot dfor 
= 0.22); (d) N, the effective waveguide index. The parameters shown in (b) 

- (d) are plotted for Al1_XGa%As DH structures with n1 = 3.6, A = 0.9 µm, and 

for ..5n = 0.1, 0.22, and 0.34. The extrema of the Eó curves (i.e., maxima) and den 

curves (i.e., minima) occur at D = 1.74. 
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guide index, b14) can also be written as sin2(1 i/2), but only for the TEo 
mode (i.e., b - (N - n2)/(n - n2) = sin2(2G/2)). The formulation of b 

in terms of 4' only, allows a simple expression for the wavepacket longi- 
tudinal shift upon total internal reflection at the dielectric 
interface:14 

d4' A 
2zs = 

d(3 iron sin4' 

i.e., the Goos-Hanchen shift. Also, it can be easily shown that as D - 0, 
b approaches asymptotically the value D2/4, and consequently (x012),9 
rather than ro.16 The effective index is a very useful concept when 
considering lateral light confinement in structures of varying active layer 
thickness11,22.23,42 as well as in buried lateral guides.24,25 

The approximations presented above refer only to TE0 modes of 
symmetric guides. For the TM0 mode of symmetric guides the difference 
occurs in the characteristic equation 12c]. Using the expressions of An- 
derson4 it can be shown that the characteristic equation is 

111/ 71 + I 1 - cost [11] -D 
1n2/2//1n1/4 

` 

n114 
12/ 

cos - 
2 

Approximation formulae for 4' can be easily found by using the same 
methods as for the TE0 mode. The errors thus introduced have values 
very similar to the ones for the TE0 mode (i.e., <2%). Table 2 summarizes 
the near -field approximations for the TMo mode of symmetric DH 
structures. We include in Table 2 an approximate formula for the TM0 
mode radiation confinement factor, ro(TM), which was obtained in a 
similar manner as the Form) analytical approximation.9 The expression 
is found to agree fairly well (within 10%) with numerically calculated 
curves by Hakki and Paoli.19 

For asymmetric guides (n3 > n2) an asymmetry factor n = (n?- nZ)/(n¡ 
- n3) is used in the characteristic mode equation [4]. Table 3 gives the 
characteristic equations for TE0 and TM0 modes and an analytical ap- 
proximation for ro of asymmetric guide TE0 modes (the same method 
as in Ref. [9] was used). Again explicit (approximate) solutions for 1,1/ over 
the intervals 0 < D < a and D > r could be obtained and, thus, one could 
approximate various near -field parameters.5,14 However, we limit our- 
selves in this paper to symmetric guides (rr = 1), since the approximations 
for the asymmetric DH case would be considerably more complex, and 
because few practical DH lasers are of the asymmetric type. These are 
treated in detail in Ref. [1]. 

In an article concerning light propagation in symmetric multimode 
guides,7 Lotspeich uses similar mathematical approximations for 4', but 
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Table 3-Asymmetric DH Structures 

Mode Characteristic Equation 

TEo 11,2 = (D - )(77D - ) + f D2 cosIP 

TMo = tan 
/D 4/2+ tan- nl /nD2- 112 

Parameter Approximation; 1 < 77 < m 

rou, ro 
1+oI'o' 1D(D-tan-IV77-1)x 

1 i 

ji+7721+(77-1)/(D-tan-I ñ1)g,- 
Definitions: 

2 2 
r.D_2rd/n¡-n2;77--2 

n, -n3 
d/2 

row = 
-4/2 

Ey2(x)dx 

only over limited ranges, since his purpose is to find asymptotes. The 
asymptotes are then used in a linear combination with variable coeffi- 
cients chosen to provide a good 1,1, approximation. While very accurate, 
the resulting 1,fd formula is rather complicated. We believe that our rela- 
tively simple approximations for >G, over intervals of D, are more than 
adequate in precisely describing the behavior of fundamental transverse 
modes in symmetric guides. 

4. Approximations of the Mode Near -Field Distribution 

The electric field variation in the transverse direction (Eq. [11) as well 

as the peak field amplitude (Eq. [31) depend directly on,', the phase shift 
at the dielectric interface. Since, as shown in the previous section, 0 can 
be approximated very well over its whole range (0 _< _< vr), a precise 
determination of the mode field distribution in the active layer as well 

as in the cladding layers is readily obtainable. However, in many cases 
(e.g. scattering loss calculations, radiation loss calculations, etc.) the 
description of the near -field by á single function would greatly simplify 
the analysis. One such single -function field description can be obtained 
by using the Epstein -layer mode126, but the expressions that have to be 
used are very complicated. In a recent paper27 Marcuse presents 
Gaussian field approximations for the fundamental modes of graded - 
index and step -index weakly guiding fibers (On « ni). We also use a 
Gaussian approximation in trying to describe the field distribution in 

symmetric double-heterostructure slab waveguides. In Sections 6 and 
8, the Gaussian approximation concept is extended to the transverse 
mode far -field pattern. Just as in the case of fibers27 the Gaussian ap- 
proximation for the fundamental mode is good only over a certain range 
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of D, the normalized guide thickness. For small D's the mode lies mostly 
outside the active layer and thus it assumes a double -exponential -like 
shape. At the other extreme, when the mode is mostly confined to the 
guide, (i.e., large D's) the field distribution will be cosine -like. We fit a 
Gaussian to the field distribution in the intermediate region28 (i.e. a field 
shape made of both a cosine curve and exponential curves). 

A Gaussian field distribution is described by the following expres- 
sion: 

72,-exp x2 - ifizi; 
l 2 

JJJ 

-W <x < co, [12] EG(x,z) = V {- 
WV 

where w is the Gaussian beam width parameter, defined as the value of 
x at which the field amplitude is 1/e of the peak amplitude. The peak 
amplitude was determined by normalizing the fields to unity. The 
Gaussian field distribution Eq. [12] is to be compared to the TEo mode 
field distribution Ey(x,z) as defined by Eqs. [1] and [3]. 

The ideal approach for the Gaussian fit is to find the beam width pa- 
rameter w such as to maximize the variational integra127 

EG(x)Ey(x)dx. 113] 

However, this requires extensive numerical calculations. We chose to 
first determine the asymptotic value of w/d as d co and then find the 
rest of the function w/d (D) by trial and error. As d tends to co, del 
d and co; this gives for Ey(x) the form VI/Vd- cos (ax/d ). Thus, we 
have to maximize the expression: 

/ r 
V w J-m 

rx 
cos 

I 
exp[-x2/w2]dx 

= 2 w exp 
4d 

2. [14] 
2 

Assuming w = ad, it can be shown that Eq. [14] assumes a maximum for 
a = 1/7r ^- 0.31. Therefore w/d = 0.31 + f(D), where f(D) - 0 as D 
co. To find f(D) we use as a trial function f(D) = (0/D3/2) + (y/D6), 
which is similar to the function empirically determined by Marcuse for 
fibers. By trial and error, and also by using the correlation between the 
field in the guide and a Gaussian approximation for the far -field (see 
Section 7), we find a best fit for 

d=0.31+fl%2+6, 1.8<D<6. 1151 

Figs. 3a, b, c show comparisons of Gaussian field distributions versus 
the exact solutions for D = 2, 3, and 4 and ..5n = 0.22 (n1 = 3.6; X = 0.9 
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Fig. 3-Comparison of near -field distribution profiles (solid curves) EM) (Eqs. [ 1] and [3b1). 

versus the Gaussian approximation (dashed curves) Eo = A./N/ 2/ w\ a 
exp(-x2/ w2) with w = 0(0.31 + 2.1/D3'2 + 4/Q6), for: (a) D = 2, in = 0.22; (b) 

D = 3, An = 0.22; (c) D = 4, An = 0.22. All graphs are plotted for structures with 

n,= 3.6 and X=0.9gm. 
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µm). The curves agree very well for D values around 3 and 4. Figs. 3d, 
e, f show similar comparisons for the case An = 0.14. The fit is still very 
good. As mentioned previously, the field distribution in the guide is al- 
most identical to the field distribution on the facet, and thus Eqs. [12] 

and 1151 give a Gaussian approximation for the near -field as well. 
Reinhart et all7 have shown that a Gaussian description of the near - 

field is useful when computing mode reflection coefficients in DH 
structures with D >- 3. The authors claim as an upper limit for an ac- 
ceptable Gaussian fit the condition V. < 2.4, which corresponds to D = 
6.6 and thus agrees with our findings. For D < 2 (e.g., d < 0.25µm when 
An = 0.22, n1 = 3.6, and X = 0.9 µm) the Gaussian near -field approxi- 
mation will be increasingly poor and thus cannot be used for predicting 
modal facet reflection coefficients.29 In a recent article, Utaka et a130 use 
an expression similar to Eq. [15] for a near -field Gaussian approximation, 
which appears to be good over the interval x < D < 6. 

5. Mode Far -Field Intensity Distribution 

The lasing mode far -field intensity distribution is the laser radiation 
pattern at large distance from the mirror facet (r » X). For the transverse 
mode case, we are interested in the electric field distribution in the plane 
perpendicular to the junction as a function of B, the angle with respect 
to the normal to the laser facet. When B assumes small values (i.e., cosO 

1), the far -field angular field distribution is obtained as the Fourier 
transform of the near -field distribution (i.e., the aperture field)1,18,28 

Isin0 sing 
G' I ) = f Ey'(x) exp I_2ix dx, 1161 

where Ey'(x) stands for the field distribution at the laser facet. The 
far -field dependence on r, the distance from the observation point to the 
center of the near -field distribution (i.e. [exp¡-j(2r/A)r)]/r), is omitted 
since we are interested only in the field variation with the angle B at fixed 
r. For large angles however, an obliquity factor g(B) must be 
used.29,29,31-33 Then the correct expression for the far -field angular field 
distribution E(B) is 

E(B) = g(9)G'IsinB). [171 

In order to calculate E(B) some simplifications are made. First one 
computes the Fourier transform of the field inside the guide, G(sinO/ 
)),1,18,28 since, as mentioned previously, Ey(x) is only slightly different 
from the field distribution on the facet Ey'(x). Then, for the obliquity 
factor, the function cosO is used, which has been shown theoretically31 
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as well as experimentally1,28 to be a very good approximation of g(0). 
Thus the far -field intensity pattern 1(0) is given by 

1(0) = IE(0)12 = cos20G [181 

While this expression is found to very accurately predict experimental 
far -field patterns,1,28,32 its computation is difficult since G(sinO/Á) is a 
rather complicated expression. Furthermore, in order to find the 
heamwidth 0± = 201/2 (fwhp) the transcendental equation [1(01/2)/1(0)] 
= 1/2 has to he solved. Dumke8 has found an approximation formula for 
01 for very thin active layers, by combining the asymptotes of 01 as d 
-i 0 and as d co. However, as will be shown in the Section 7, Dumke's 
formula is a reasonably good approximation only over a very limited 
parameter range (d < 0.1 µm and .Sn < 0.22). In the next section we use 
a Gaussian approximation of the far -field pattern over the range 1.5 < 
D < 6 in order to find very accurate expressions for 01 over wide pa- 
rameters ranges (0 < D < 6 and .fin/n _< 10%). Furthermore we also can 
predict fairly well the far -field intensity patterns. 

6. Beamwidth Gaussian Approximation (1.5 < D < 6) 

It was shown in Section 4 that the field distribution in the waveguide can 
be described quite accurately by a Gaussian field distribution over the 
D range 1.8 to 6. Then, it should not be surprising to find a Gaussian 
distribution in the far -field as well. Furthermore the obliquity factor can 
be approximated by a Gaussian -like function32 

2 

cos0 ^ exp -2 } [19] 

within 2% for 0 < 0 < 40°. 
The angular beam spread for a fundamental Gaussian beam has the 

form34'35: 

°beam =tan -1 (-X), [20] 1 

7rwO 

where we, is the beam minimum waist and 0 is the angle measured from 
the z axis. The parameter Olean, is the angle at 1/e of the far -field angular 
field distribution. In order to obtain 01/2 (the angle at 1/2 of the far -field 
intensity distribution), a factor of 0.59 = s/(ln2)/2 should be added in 
Eq. [20], 

,0.59 
01/2 = tan -1 [21] 

awo 

To find too by starting in the near -field is not an easy task since, as 
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mentioned above, an obliquity factor has to be considered for the far - 
field distribution. For this reason we chose to find wo by fitting the ex- 
pression 01 = 201/2 = 2 tan-'(X0.59/irwo) to numerically calculated 
beamwidth curves by Butler and Kressel.' From the Gaussian fit of the 
near -field distribution, we know that wo should have the form wo/d = 
0.31 + fl/D3/2 + y/D6. The best fit to numerical computed 01 curves is 
found for = 3.15 and -y = 2 over the range 1.5 < D < 6. Thus we obtain 
for the beamwidth the approximation formula: 

01 = 2 tan-' (40.59) 
[22] irwo 

with 

wo = d [0.31 + (3.15/D3/2) + (2/D6)] for 1.5 < D < 6. 

The actual beam minimum waist is not wo but w, the Gaussian parameter 
of the near -field profile (see Eq. [12]). The difference is due to the 
obliquity factor g(0). It can be easily checked, via the far -field intensity 
pattern Eqs. [18] and [24], that Eq. [22] contains the contributions of 
both the near -field Gaussian approximation, Eq. [12], as well as the 
obliquity factor, cos0. Fig. 4 shows a comparison of the Gaussian ap- 
proximation (D > 1.5) versus numerical data by Butler and Kressel for 
various An = n1 - n2 values with n 1 = 3.6 and A = 0.9µm. The agreement 
is very good (within 2%) for On values between 0.14 and 0.26, which also 
is the region of most interest in AlxGal_xAs lasers (.fin ^ 0.65 ix)'. It 
must be stressed that the numerical calculations by Butler and Kressel 
agree extremely well with experimental data of various workers.18,32,36 
The curve D = 7r in Fig. 4 signifies the cutoff for excitation of the first 
order mode and also happens to be the locus of the 01 curves maxima 
for given .An. As mentioned previously, although the first order mode 
can be excited, due to modal gain considerations it does not lase until 
D has values somewhere between 5 and 6 (e.g., 0.6-0.7 µm for An = 
0.18).1,2 Thus the 01 curves have to be considered up to those D values. 
From Fig. 4 it can be seen that for 1.5 < D < 5 the Gaussian approxi- 
mation is good within 4% for 0.06 < .. n < 0.34. Yet as D .0, Eq. [22] 
gives 01 1.2 a/d which is the expected behavior in the limit that the 
near -field distribution becomes a cosine function.8 For large On values 
(e.g., An >_ 0.42), Eq. [22] fails to give a good approximation for 01, which 
we expect since both the obliquity factor and the near -field distribution27 
tend to diverge from a Gaussian -like shape. Since the 01 formula applies 
for any type of symmetric double-heterojunction (e.g., GaAs-AIGaAs, 
InP-InGaAsP), we conclude that the Gaussian approximation for the 
fundamental mode beamwidth is accurate within 4% for 1.5 < D < 5 and 
for An/n < 10%. 
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Fig. 4-The beamwidth B1 (full width at half power) for the laser radiation pattern, in the 

plane perpendicular to the junction, as a function of a wavelength normalized active 

layer thickness, and for different index steps ..5n (0.06 to 0.42). The crosses 
correspond to numerically calculated points by Butler and Kressel.' The solid 

curves are approximations: an asymptotic approximation for 0 < D< 1.5 (see 

Fig. 5) and a Gaussian approximation for 1.5 < D < 6 (i.e., 01 = 2 

tan-'[ñ0.59/rwo] with wo = d10.31 + 3.15/D312 + 2/D6], where D = 
[27r/A]dVn¡- n2). 

7. Beamwidth for Thin Active Layers (0 < D < 1.5) 

For D < 1.5, the beamwidth Gaussian approximation Eq. ]22] is no longer 
appropriate. The near -field patterns have double -exponential shapes28 
and become relatively wide, which in turn gives far -field angular dis- 
tributions of narrow heamwidth and non -Gaussian shapes. In order to 
approximate the heamwidth we use Dumke's formulas with a correction 
factor K chosen to match the Gaussian approximation at D = 1.5. We thus 
obtain 4.09(d/A)(nÍ - nz) 

B1 
1 + 3.39K(d/X)2(n ¡ - n2) 
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with 

0.65D -\/n ¡ - n2 

1 + 0.086KD2 
0 < D < 1.5 [23] 

K= 
2.52n-nz 

5.17. 
tan -1(0.36 - n2) 

As can be seen from Fig. 4, this approximation is very good. The factor 
K varies almost linearly between 1.95 and 2.9 as On takes values between 
0.06 and 0.6 (e.g., K = 2.2 when án = 0.18). For the reader's benefit, 
we show in Fig. 5 values of 01 over the very thin active layer region 
0 < 0.9 d/Á < 0.2 µm, and for additional .fin values (0.5 and 0.6). We also 
extend the approximation Eq. [22] beyond the D = 1.5 limit up to d = 
0.2 µm (for On > 0.18). For comparison, we plot dashed curves8 corre- 
sponding to the case K = 1, for two _Sn values, 0.22 and 0.6. It appears that 
Dumke's formula considerably overestimates the beamwidth ford > 0.1 
µm at An = 0.22 and for d > 0.05 µm at án = 0.6. The previously re- 
ported= relatively good fit of Dumke's formula to beamwidth curves 
published by Casey et al18 is thought to arise from the fact that in the 
latter study the obliquity factor was not considered.32,38 The 01 curves 
of Fig. 5 should prove useful for an estimate of ..Xn once 01, d, and X have 
been accurately determined experimentally.' 

8. Far -Field Patterns 

We showed in Section 6 that a Gaussian approximation is a very good 
fit when trying the estimate the laser beamwidth for D > 1.5 and An/n 
< 10%. We thus expect that for the same ranges of parameter variation, 
the far -field intensity pattern is very much like a Gaussian curve. 
Therefore we assume: 

2 

1(0) = exp {- 0.690 
. D > 1.5; < 10%, [24] 

(01/2)2 

where 01/2 = 01/2 is given by Eq. [22] and the factor 0.69 is introduced 
such that when 0 = 01/2, 1(0) drops to half its value at 0 = 0. Previously, 
Lewin32 also proposed a Gaussian form for the far -field intensity pattern, 
but he assumed it should work only for small angles and with no re- 
striction on D. In the same article Lewin finds very good agreement 
between his Gaussian approximation corrected for the obliquity factor, 
and an experimental far -field pattern of a structure with D = 1.52 (fix 
= 0.3, d = 0.18, X = 0.89 µm). As shown in Figs. 6a and b, we also find 
good fit to Gaussian curves of experimentally obtained far -field patterns 
from structures with D > 1.5. Thus, Fig. 6a shows an excellent agreement 
between a Gaussian and the experimental3y far -field intensity profile 
of a structure with D = 3.68 and án = 0.08 (01/2 = 19°). For structures 
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with 01/2 larger than ^25°, there is some disagreement in the curve tails 
as shown in Fig. 6b (i.e., for a Gaussian versus experimenta133 far -field 
of 01/2 = 25.5° obtained from a laser with D = 2.16). We believe that this 
effect is mainly due to the obliquity factor deviation from a Gaussian -like 
form for O > 40°. Overall though, down to approximately 25% of the peak 
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exp(-0.69 021(01,2)2), where 01/2 = 01/2 is given by Eq. [22]: (a) d = 0.7 µm, 

=0.08;D=3.68,01=38°;(b)d=0.25 pm, =0.22;0=2.16,01= 
51°. The patterns were obtained from structures with n1 = 3.6, ñ = 0.9 µm and 
TE polarized beams. 
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intensity, the Gaussian approximation appears to be a very good estimate 
of the far -field intensity profile. 

Since the beamwidth Gaussian approximation does not apply for 

structures with D < 1.5, we expect that for the same D range a Gaussian 
curve cannot closely fit the far -field pattern. For comparison we show 

in Fig. 7 a Gaussian curve with 01/2 = 11° superposed over the far -field 
distribution of a laser with 01 = 220.38 While there is fairly good agree- 
ment from the peak intensity to its half -height (-3 dB), below -3 dB 

the Gaussian curve severely underestimates the far -field distribution. 
Similar results were obtained when comparing Gaussian curves to nu- 

merically calculated far -field patterns of structures with heamwidths 
below 30° and D < 1.5.1 One is left with the alternative of using the 
Fourier transform. For D < 45° and D < 1.5, it can be shown that the 
near -field distribution Fourier transform?8 can be simplified; as a result, 
the relative far -field intensity distribution is 

1(9) 
= cos D <1.5, B <45°, [25j (2(2 

+G2-A2)(G'2+A2) 
where A = (27r/X) d s nO, >y' = D sin(02), and for >G one can use the ap- 
proximation formula obtained in Section 3 (i.e., i' = 4(N/1 + (D2/2) - 
1)/D). For various low beamwidth data we find that the condition O < 

45° is equivalent to 01 < 40° if B = 45° corresponds to a -10 dB drop in 

peak intensity (i.e., if 1(45°)/1(0) = 0.1). In Fig. 7, we compare the ap- 
proximation Eq. [25] to the experimental far -field with 01 = 22°, and 
find a very good agreement. 

81= 22° 

D=0.5 

EXPERIMENTAL 

---- GAUSSIAN FIT - APPROXIMATION 

0 10 20 30 

8 (DEGREES) 

Fig. 7-Comparison of experimental (solid curves) far -field patterns of a low-beamwidth 

TE polarized laser (01 = 220)38 to a Gaussian of same full -width at half -power 

(dashed curves), and to a Fourier transform approximation (dash -and -dot curve) 

for angles 0 < 45° (see Eq. [25]). The structure has D = 0.5 and An = 0.18. 
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The far -fields (beamwidth and intensity profiles) for TMo modes are 
not treated due to the difficulty in calculations and lack of experimental 
data. However, from the work of Butler and Kressell it turns out that, 
for the same DH structure, there are only slight differences between TEo 
and TM0 mode patterns. Thus the above approximations for far -fields 
should be reasonable estimates for TMo modes as well. 

For optical communications, the far -field intensity pattern determines 
the coupling efficiency to optical fibers when no lenses are used. It ap- 
pears from our analysis that for low -numerical -aperture fibers (i.e., those 
of acceptance angles less than 20°), a Gaussian description of the laser 
beam in the plane perpendicular to the junction is fairly accurate. Then, 
if the laser oscillates in a fundamental lateral mode, the whole beam 
could be considered Gaussian. When lenses are used such that the lasing 
spot is imaged onto the fiber end, the degree to which the imaged field 
is Gaussian -like, as well as the ratio of its spot size to the fiber core radius 
or to the fiber spot size27,39,4o definitely influences the coupling effi- 
ciency. 

9. Conclusion 

This paper contains a series of relatively simple yet very accurate ana- 
lytical approximations for parameters characterizing the near- and 
far -field distributions of the TE0 mode in symmetric DH lasers. For the 
reader's convenience we have summarized all these approximations in 
Table 1. As can be seen, all parameters of interest can be written as 
functions of only two quantities: the normalized waveguide thickness, 
D, and the square root of the difference in real parts of the layers' di- 
electric constants N/nf - n2 . Aside from obvious simplifications in the 
calculation of various device parameters, the approximations should 
allow explicit analytical solutions for various laser optimization problems 
as well as physical insights into trends in device behavior. The ability 
to approximate near- and far -field TE0 mode intensity patterns by a 
Gaussian function (over certain ranges of D and ..1n) should prove useful 
for solving problems of scattering, radiation loss, and/or coupling to 
optical fibers. 

The various formulae contained in the paper, together with the ana- 
lytical approximations for the radiation confinement factor ro9 (i.e., I'o 

D2/(2 + D2)) and the mode reflection coefficient R041 give a complete 
analytical picture for the TE0 mode propagation inside and outside the 
laser. As mentioned previously, similar approximation methods can be 
extended to the TMo mode propagation in symmetric waveguides and/or 
fundamental mode propagation in asymmetric waveguides, by starting 
from their corresponding characteristic equations (Tables 2 and 3). 
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Natural Frequencies and Mode Shapes of Multi - 
Degrees of Freedom Systems on a Programmable 
Calculator 

D. B. Wolfe 

RCA Government Communications Systems, Camden, N.J. 08102 

Abstract-The Holzer tabulation method for determining the natural frequencies of multi - 
degree of freedom torsional systems Is relatively easy to automate on a computer 
or a programmable calculator. The Holzer method has been extended to trans- 
lational systems consisting of masses and springs configured so that the model 
starts with a mass and ends with a mass. For example, the method has been used 

to determine the natural frequencies of freight trains with an engine in the front 
and a caboose in the rear. The method presented here extends the basic Holzer 
theory further to accommodate lumped parameter structural models. A program 
Is developed for a programmable calculator for determining the natural frequencies 

and mode shapes of multi -degree of freedom systems. 

1. Holzer Tabulation Method 

The Holzer tabulation method was developed for determining the nat- 
ural frequencies of torsional multi -degree of freedom systems. Often, 
mechanical systems are equated to a shaft containing several disks, as 
shown in Fig. 1. The elasticity of the sytem is represented by an equiv- 
alent shaft that has the ability to store potential energy. The disks rep- 
resent the equivalent mass moment of inertias of the system. If disk 1 

in Fig. 1 is displaced through some angle O while disk 4 is held stationary, 
energy is stored in the system. When the disks are released, the system 
will he set into torsional vibration at its set of natural frequencies. If there 
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NATURAL FREQUENCIES 

1 - 3 

2 

Fig. 1-Holzer Model of Torsional System. 

4 

is no damping, the system will continue to oscillate indefinitely without 
a forcing function.* 

The Holzer tabulation method, shown in Table 1, is convenient for 
determining the natural frequencies (we) and mode shapes. The natural 
frequencies are determined by assuming 131 = 1 radian and trying various 
values of w in the table. When the summation of torque is found to be 
zero for the system (Column 6, row N), a natural frequency is found. If 
the summation of torque is not zero, it is called residual torque. The 
residual torque can be plotted against various angular frequencies (w) 

as shown in Fig. 2. 

The Holzer table is used as follows: 
1. Estimate or assume a value for w 

2. Calculate 0)2 from 1, above 
3. Fill in Column 2 (I) 
4. Fill in Column 7 (k) 
5. For item 1 (first row) 

Table 1-Holzer Tabulation Method (Assume Sample Values of to and 0, = 1 Radian) 

1 2 3 4 5 6 7 8 

Item I diaz 1 
k, E kw218 

k, 

k,, 
k,2 

Column 1 = Disk number 
Column 2 = Mass moment of intertia, lb -in -sect 
Column 3 = u,2 multiplied by Column 2 

Column 4 = S,, relative angular displacement between disk l and disk 1, radians 
Column 5 = Torque resulting from disk i, lb -in 
Column 6 = Summation of torque, lb -in 
Column 7 = Torsional spring constant k,, in-Ib/rad 
Column 8 = The relative angle of twist between disks, radians B 

For a derivation of the Holzer Method see C. R. Freberg and E. N. Kemler, Elements of Mechanical 
Vibrations, John Wiley 8 Sons, 1966, pp 72-8. 
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Fig. 2-Residual torque versus w. 

(a) Column 3, I1 X w2 

(b) Column 4, assume (31 = 1 radian 
(c) Column 5, torque (T) same as Column 3 

(d) Column 6, (T) same as Column 5 

(e) Column 8, (0) Column 61 divided by Column 71 

6. For item 2 (second row) 
(a) Column 3, 12 X w2 

(b) Column 4, ((32 = 01 - T/kt) Column 41 - Column 81 

(c) Column 5, (torque) Column 32 X Column 42 

(d) Column 6, (IT) Column 61 + Column 52 

(e) Column 8, 0 Column 62 divided by Column 72 

7. For item N 
(a) Column 3, IN X 0)2 

(h) Column 4, Column 4N-1 - Column 8N_1 
(c) Column 5, Column 3N X Column 4N 
(d) Column 6, (Residual Torque) Column 6N_1 + Column 5N] 

The system frequencies are found at the zero crossings of the residual 
torque plot. The residual torque curve can be very steep at the zero 
crossing points and care must be taken to accurately determine these 
points. 

The Holzer tabulation method can be used for translational systems 
by substituting mass (Wt/g) for the mass moment of inertia I, transla- 
tional spring constant K in lb/in for the torsional springs constants kt, 
and the relative displacement of each mass from the first mass x in inches 
for $(x1 is assumed to be 1 inch), as shown in Table 2. 

A Holzer Structural model requires the last spring to be fixed to a 
foundation such as the earth, as shown in Fig. 3. To set this model into 
oscillation, an infinite force would be required. However, since this is 

only a mathematical model, we will set the entire system into oscillation 
and then remove the forcing function, so that the entire system vibrates 
at its set of natural frequencies and the summation of force equals zero. 
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Table 2-Translational System (W = weight, g = 386 in/sec2, w Is in Hz, and x, assumed to be 1 

inch) 

1 2 3 4 5 6 7 8 

Item W/g IV, 2/g Ww 2x/g Ww2x/g K 1/KEWw2x/g 
1 M, 1 K, 
2 M2 K2 
3 M3 K3 
4 M4 K. 

N MN 

We will find that if we have not selected the proper value for co the re- 
sidual force will be infinite because the force generated by the last mass 
as shown in Column 5N is equal to the infinite mass multiplied by w2xN. 
Since we are looking for a zero crossing in the residual force versus an- 
gular frequency curve, we need only determine the sign of the relative 
displacement xN. When xN is positive, the residual force will be infinite 
(positive), and when xN is negative the residual force will be infinite 
(negative). Therefore, a change in the sign of xN is the result of a zero 
crossing and is found at a natural frequency of the system. Since Column 
8 is the displacement between adjacent masses, mode shapes can be 
developed by determining the displacements between masses at the 
vibration modes. 

Fig. 3-Holzer structural model. 
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2. Use of Programmable Calculator 

It is obvious that a large number of simple calculations are necessary to 
determine the natural frequencies and mode shapes of a multi -degree - 
of -freedom structural model. Since the calculations are repetitive, it is 

a simple job to program this problem for a computer or programmable 
calculator. 

A program for a TI -58/59 programmable calculator has been devel- 
oped. The program assumes w to be 10 radians and runs through the 
Holzer tabulation calculations looking for a change in the sign of xN. If 
xN changes sign (plus to minus) between 0 and 10 radians, the program 
subtracts 5 radians from w for averaging, divides by 27r, rounds the value 
to the nearest whole number and displays the answer as 1 Hz. If xN does 
not change sign in 10 radians, the program will add 10 radians to w and 
will repreat the above process. The angular frequency w will be incre- 
mented by 10 radians until xN changes sign. The calculator will then 
compute the frequency and display the results in Hz. The displacement 
between masses resides in the calculator memory and can be extracted 
for developing mode shapes. 

The TI -58 contains enough memory to calculate the natural 
frequencies and mode shapes of a system containing up to seven masses 

and seven springs. The following description of the structural Holzer 
program is presented here to enable the reader to use it without mas- 
tering the art of programming calculators or computers. Before the de- 
tails of the program are delineated, you will have to know a few things 
about the programmable calculator. The keyboard is shown in Fig. 4. 

Besides the normal calculator functions, the following programming 
functions are required for this program: 
LRN-(Learn)-Depressing this key allows the calculator to be pro- 

grammed. Activating the key a second time will take the calcu- 
lator out of the learn mode. 

LBL A-(Label A)-Defines the start of this program. 
STO-(Store)-Stores data in specific memory locations. For example, 

10 STO 03 will store the number 10 in memory location 03. 

RCL-(Recall)-Recalls the data from memory. For example, RCL 03 

would bring the number 10 stored in location 03 to the display 
register. 

SUM-(Sum)-Adds to a memory location. For example, 5 SUM 03 

would add 5 to the contents of the memory at location 03. 

Nop-(No Operation)-Provides spacing between program parts for 
later additions. Program execution simply performs no operation 
when this instruction is encountered. For example, the Nop 
function can be used to change the sign of a function by inserting 
a minus sign in place of the Nop. The address of the program step 
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Fig. 4-Keyboard diagram for TI -58. There are two functions for most keys. The basic 

functions are shown as white keys with black lettering. The second functions, 
black rectangles with white lettering, are obtained by depressing the (2nd) key 
and then the key beneath the desired function. 

must be remembered so that you can instruct the calculator to 
go to step XYZ (the address of Nop) and then press the (+/-) 
key. 

GTO-(Go To)-This function is used to instruct the calculator to go 
to a specific address. It does this by moving its program pointer 
to the desired address. The program pointer is an internal device 
used by the calculator to determine which instruction it should 
perform next when executing a program. In the learn mode, the 
pointer automatically points to the next unfilled location in the 
program memory. When in the learn mode, depressing the (GTO) 
key and (A) key will tell the program pointer to go to the start of 
the program. If the calculator is not in the learn mode, the fol- 
lowing key strokes, GTO, 1, 2, 5, LRN, will bring step 125 to the 
display register and place the calculator in the learn mode. The 
program can then be edited, e.g. the function of step 125 can be 
changed by depressing a different key. 

FIX-Fixes the decimal point. For example, the following key strokes; 
2nd, r, 2nd, FIX, 0 would result in the following display in this 
sequence; 0, 3.141592654, 3. Depressing INV, 2nd, FIX will re- 
store 3.141592654 to the display. 
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INV-(Invert)-Inverts the function. For example, it was used to remove 
the fixed decimal in the above example. 

x >_ t-(Test Instruction)-This is used as a conditional transfer. The 
test register (t) is set to zero in this program. This instruction is 
used to determine the change of sign of the last spring xN. If xN 
>_ 0 a transfer is made to the address specified. In this program, 
it goes to a program step which adds 10 radians tow because the 
sign of xN did not change. If xN is less than the test register (0), 
it is negative and the next step in the program is followed, which 
is to recall the value of w and display it in Hz. 

R/S-(Run/Stop)-This function will start or stop the program. This 
instruction will halt the program and display the results of the 
last instruction. 

RST-(Reset)-Resets the program pointer to step 0. 
When the calculator is being programmed from the keyboard, the 

program step numbers are displayed each time a key is depressed. The 
number displayed is the program step of the next instruction to be en- 
tered. 

3. Three -Mass, Three -Spring Structural Holzer Program 

The details of a three -mass three -spring structural Holzer program for 
a TI -58/59 are described below. The following memory locations are 
preassigned to the variable w, the masses, and springs of Fig. 3: 

Memory Location Contents 

01 w1, radians/sec 
02 MI, first weight, lbs 
03 M2, second weight, lbs 
04 M3, third weight, lbs 
05 K1, first spring constant, lb/in 
06 K2, second spring constant, lb/in 
07 K3, third spring constant, lb/in 

The program for the calculator is as follows. 

Key Strokes Function 

LRN Enter learn mode 
2nd Lbl A Defines start of program 
RCL 1 Recalls w 

x2 Calculate w2 

STO 8 Stores w2 in memory location 08 
(RCL 8 X RCL 2 _ 386) STO 9 Calculate Force (F) on first spring 
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(1 - (RCL 9= RCL 5))STO 10 

(RCL 8x RCL 3x RCL 10-- 
386) SUM 9 

(RCL 10 - (RCL 9 - RCL 6)) 
STO 11 

(RCL 8 X RCL 4 X RCL 11 ± 
386) SUM 9 

(RCL 11 - (RCL 9 = RCL 7)) 

2nd Nop 2nd x >- t 175 (see 
note at end of program) 

((RCL 1 - 5) - (2 X 2nda)) 

2nd FIX 0 R/S 

LRN 
GTO 175 (see note at end of 

program) 

(w2x i W1/g) where x 1 
is assumed to 

be 1 inch and stores in memory 
location 09 
Calculate x2 by determining the 
displacement between M1 and M2, 
which is the force on M1 divided by 
K1 (RCL 9 - RCL 5) and 
subtracting it from x1 (one inch). 
Stores at memory location 10. 
Calculate Z F by computing the 
force on the second spring (w2W2x2/ 
g) caused by M2 and summing it to 
the force on the first spring. 
Calculate x3 by computing the 
displacement between M2 and M3, 
which is the total force on the 
second spring divided by K2, 
subtracted from x2. Stored at 
memory location 11. 
Calculate E F by computing the 
force on the third spring (w2 W3x3/g) 
caused by M3 and summing to 
memory location 9 

Calculate xN by computing the 
displacement between M3 and Mo. 
which is the total force on spring 3 
divided by K3, subtracted from x3. A 

change in sign of this displacement 
indicates a zero crossing. 
Conditional transfer if x3 >- 0, go to 
175 (move the program pointer to 
step 175). If x3 _< 0 proceed to the 
next step. 
Calculate frequency in Hz. Recall w 

from memory location 01, subtract 5 
radians (for averaging within the 10 
radian steps) and divide by 2/r. 
Fixes decimal place to nearest whole 
number, stops program and displays 
frequency in Hz. 
Exit learn mode 
Moves program pointer to Location 
175 (an arbitrary urused memory 
address) 
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LRN Enter learn mode at program step 
175 

10SUM 1 Adds 10 radians to w 

GTO A Moves program pointer to the start 
or program (step 0) to recalculate xN 

with a new w (old w + 10 radians) 
LRN Exit learn mode, End of Program 

Note: The conditional transfer (2nd Nop x >_ t 175) contains a Nop in- 

struction and a transfer address of 175. The transfer address was arbi- 
trarily selected as program step number 175 since the program for the 
three -mass three -spring system is only 112 steps long not including the 
6 additional program steps (1, 0, SUM, 1, GTO, A) beginning at the 
transfer address 175. When programming the calculator for a six or seven 
spring/mass system, step 175 would already have been used before get- 
ting to the conditional transfer instruction. The transfer address must 
he greater than the program step number of the Nop instruction. The 
transfer address can be any step number greater than 212 and less than 
234 for the TI -58 for any system containing up to 7 springs and 7 masses. 
The Nop instruction is inserted in the program prior to the test in- 
struction x >_ t. This test instruction was used to determine the change 
in sign (positive to negative) of the relative displacement of the last 
spring, xN, which determined the frequency of the first mode of vibra- 
tion. The second mode will be found when xN changes sign again. 

In determining the frequency of the second mode the blank instruction 
(Nop) is replaced with (INV) so that the conditional transfer instruction 
is INV x >_ t 175. The program will now look for xN to change from 
negative to positive in determining the frequency of the second mode. 
The next mode is found by replacing INV with Nop. 

The operation of the calculator is as follows. First place the following 
values in memory: 

10 STO 01 start with 10 rads. 
M1 STO 02 Weight No. 1 

M2 STO 03 Weight No. 2 

M3 STO 04 Weight No. 3 

k1 STO 05 Spring No. 1 

k2 STO 06 Spring No. 2 

k3 STO 07 Spring No. 3 

Depress A 
Calculator will compute the 1st mode in Hz 
GTO 
91 
LRN 

2nd MODE 
(LOCATION of Nop) 
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INV 
LRN 
RST 
A 

GTO 
91 
LRN 
2nd 
Nop 
LRN 
RST 
A 

(SECOND MODE COMPUTED) 
3rd MODE 

(THIRD MODE COMPUTED) 

The mode shapes can be developed by determining the displacements 
between the masses. The displacement between masses is found in 
Column 8 of the Holzer table K-1 Ww2x/g. Note that EWw2x/g is al- 
ways stored in memory location 9 for each mass and the displacements 
can be found by dividing it by the springs constant K. Looking at the 
program we find that RCL 10 = (1 - (RCL 9 _ RCL 5)) for mass 1 where 
memory location 9 contained E¡ W2x at the time of the calculation and 
memory location 5 contains K1. Since the displacement between M1 and 
M201_2) is equal to K-1 El Ww2x, we obtain RCL 10 = (1 - (51_2) and 
ó1_2 = 1 - RCL 10. 

The displacements might be very small; therefore, the calculator must 
be taken out of its fixed decimal place mode. After the calculator displays 
the frequency of the first mode of vibration, the following keys are de- 
pressed: 

INV, 2nd, FIX 
1- RCL 10 = 

The relative displacement between mass 1 and mass 2 will be displayed 
on the calculator. 

The displacement between masses 2 and 3 can be determined in a 
similar manner. 

RCL 11 = (RCL 10 - (RCL 9 - RCL 6)) 

52_3 = RCL 9 _ RCL 6 

where RCL 9 = Wwx/g 

RCL 6 = K2 

152-3 RCL 10- RCL 11 

The displacement between masses 3 and oz, is determined by: 

53_m = RCL 9 _ RCL 7 
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where RCL 9 = Ww2x/g 

RCL 7=K3 
The displacements between masses at the higher modes are obtained 
by following the procedure outlined above remembering always to re- 
move the calculator from the fixed decimal mode. 

The displacements between masses in each mode are normalized so 
that the maximum displacement between adjacent masses (51_2, 
(53_m) is a unit deflection. This is accomplished by dividing all dis- 
placements by the largest displacement. The displacements may be 
plotted to delineate the mode shape. 

4. Example 

Fig. 5 shows a steel rack with three shelves supporting rigid masses. The 
rack structure is welded so that the shelves and top are fixed to the four 
columns. The base of the assembly is firmly fixed to a vibration table. 
The problem is to find the natural frequencies and mode shapes that 
would be found if the table were to oscillate in the x direction as shown 
on the figure. 

The Holzer lumped parameter structural model was shown earlier in 
Fig. 3. The spring constants K represent the compliance of the structure 
between the masses. Values of the masses are shown in Fig. 5. The rack 
weight apportioned to each mass is 0.24 the column weight plus the shelf 
weight, or approximately 10 lbs/mass. Therefore, M1 = 110, M2 = 160, 
and M3 = 210 lbs. 

EMPTY RACK Wt = 5015 

24inW x 24inD x 60inH 

COLUMNS, 2in x 2in x 

Ivy = 0.2in° 

RACK MATERIAL - STEEL 

Mi = 100 lbs 

M. = 150 lbs 

M, = 200 lbs 

Fig. 5-Rack assembly used for example. 
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\\\\\\\i \\\ 

/I/ 
Fig. 6-Deflection curve. 

The spring constants K are derived from a static analysis of the 
structure. If the rack was deflected in the x direction, the columns be- 
tween the shelves would bend in an "s" shape with the ends perpendic- 
ular to the shelves. The deflection curve of the columns looks like two 
cantilever beams in series, as shown in Fig. 6, where h is the distance 
between shelves (h = 20. The spring constant of a cantilever beam with 
length I is 

K=3E1 
13 

3E1 

(h/2)3 per beam. 

There are 8 beams per shelf, and springs in series add like capacitors in 
series: 

Kcolumn = 
1 = 1 - 12 E//h3 

1 1 1 1 

Kbeami + Kbeam2 24E1/h3 + 24E1/h3 

K 4 = 48 El /h 3 (per shelf) 

K 
48E1 

h3 

= = 
48(30 x 106)(0.2) 

36,000 lb/in (20)3 
48(30 x 106)(0.2) 

K3 - (10)3 

K3 = 288,000 lb/in = 288,000 lb/in. 
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MODE 1, 31 Hz 

Key Stroke Display 

(1-RCL10) 0.317 

61-2 

62-3 
(RCL10-RCL11) = 0.631 

(RCL9 e RCL7) 0.083 

MODE 2, 79 Hz 

Key Stroke Display 

6 (1-9C1.10) = 1.979 
1-2 

6 (RCL10-RCUI) 0.839 
2-3 

6 
(RCL9 + RCL7) -.171 

MODE 3, 125 Hz 

Key Stroke Display 

(1-RCL10) 4.94 
1-2 

6 (RCL10-RCL11) -23.37 
2-3 

6- _ (RCL9 4 RCL7) 19.99 

Nºrmalized 

0.502 

1.000 

0.131 

Normalized 

1.00 

-.427 

-.086 I 

2 

3 

/////////%// I 

3 

00 

Normalized 

/ 

/ 
/ 

-7 I 

0.211 
I 

/ 

-1.00 
I 

2 

0.855 

3 / 
/ 

////1/7////77;///////1 CO 

Fig. 7-Deflection curve plotted (a) for mode 1, 31 Hz, (b) for mode 2, 79 Hz, and (C) for mcde 

3, 125 Hz. 
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Once the calculator is programmed, the data is loaded as follows: 
Key Strokes 

w 

M1 
M2 
M3 
K1 
K2 
K3 

10 
110 
160 
210 
36,000 
36,000 

288,000 

STO 01 
STO 02 
STO 03 
STO 04 
STO 05 
STO 06 
STO 07 

The natural frequencies are 
quence: 

Key Stroke 

now computed 

Display 

with the following se - 

A 

GTO 
91 
LRN 
INV 
LRN 
RST 
A 

GTO 
91 
LRN 
2nd 
Nop 
LRN 
RST 
A 

31Hz 

79Hz 

125 Hz 

1st mode 

2nd mode 

3rd mode 
Before the mode shapes are determined, the calculator must be taken 

out of the whole integer mode with the following key strokes: INV, 2nd, 
and FIX. The mode shapes are determined by computing the deflections 
between masses, normalizing to unit deflection, and plotting, as shown 
in Fig. 7(a-c). 
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Application of Finite Element Methods 

The following papers in this issue of RCA Review were selected from 
among several presented at a Finite Element Symposium held at RCA 
Laboratories on March 13-14, 1978. This Symposium featured papers 
on both theory and application of finite element methods, and the papers 
presented here illustrate the diverse applicability of the method. Finite 
element computer methods have been shown to be a powerful tool useful 
in the solution of complex engineering problems for which closed form, 
text -book solutions do not exist, either because of a complex shape or 
because of complex conditions of restraint (i.e. boundary conditions). 
Some applications of the finite element method investigated at RCA 
include the stress distribution arising from pressure or thermal loads 
in consumer products, spacecraft, and semiconductor wafers; natural 
frequencies of vibration in broadcast towers; heat flow in electronic 
components; and electric fields in cathode ray tubes. Examples of ap- 
plications of finite element analyses that have been investigated else- 
where include fluid flow and transport, impact, creep, soil -structure 
interactions, earthquake simulation, crack analysis, electricity, and 
magnetism. 

In the finite element method, a mathematical model is made by di- 
viding the continuous structure or fluid into 1-, 2-, or 3 -dimensional 
discrete blocks (finite elements) for which mathematical formulas de- 
scribing their behavior have been derived. The mathematical model for 
the behavior of the aggregate structure is then the sum of the properties 
of the individual blocks and their interactions. The individual finite 
elements are described spacially by the ordering and Cartesian coordi- 
nates of their corners. The appropriate boundary conditions, material 
properties, and loads must also be specified. Here, the loads applied to 
the finite element model of the structure may be a thermal, pressure, 
gravity, electric, static, or time -varying force, or a combination of these. 
The solution is then calculated from the input data for the mathematical 
description and properties of the structure using either a commercial 
(ANSYS, MARC, STARDYNE, NASTRAN, etc.) or a proprietary 
computer software program (such as the RCA Corporation's TV Tower, 
DYNA Structural Dynamics, or POT3D Electron Optics Program). The 
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outputs of these programs are both tabular and graphical representations 
of the resulting solutions. 

The power of the finite element method is that it permits the a priori 
prediction of the response of a complex structure to a complex load from 
a descriptive blueprint of the geometry of the structure and its physical 
properties. In this way, many design changes can be made and the effect 
of these design changes evaluated before molds are produced or full scale 
construction begun. 

The series of papers included here discusses finite -element -method 
theory and solutions of problems dealing with spacecraft, television 
picture tubes, and high power tubes for fusion energy research using 
static, dynamic, and thermal analyses. 

The paper by Sheffler gives a brief overview of the theory and utili- 
zation of the finite element method. For a more complete description 
of general finite element theory, the texts of Zienkiewiczl or Gallagher2 
can he consulted. The application of these methods to the design and 
analysis of spacecraft is described in the paper by Niederoest. Here the 
vibrational modes during launch and flight are calculated and graphically 
presented. It should he pointed out that the finite element representation 
of a spacecraft sitting atop a launch missile is not a strict geometrical 
description of this very complex structure, but rather is a "bare -bones" 
representation. In this case, parts of the structure are lumped together 
as equivalent masses, thereby reducing considerably both the number 
of elements required to describe the structure and the attendant com- 
puter solution costs. 

Professor Pian describes the use of variational methods and hybrid 
elements to achieve better accuracy in the evaluation of stresses. These 
procedures are particularly effective where, for example, Poisson's ratio 
approaches 0.4999, as for an incompressible material, or in the analysis 
of a crack. A further advantage of these methods is a greatly reduced 
number of elements needed to describe the crack. But, here a somewhat 
larger computing effort is required because of a larger number of un- 
known quantities. 

In the paper on the analysis of television picture tubes, three dimen- 
sional elements are assembled to form a finite element model that more 
closely describes the geometry of the actual structure. Here, though, only 
one -quarter of the tube is modeled to reduce the computer costs. This 
model is then adjusted or altered slightly to determine the effect of 
geometrical differences on atmospheric -pressure -induced stresses, the 
effect of implosion -protection safety bands, and thermal -processing - 

O. C. Zienkiewicz, The Finite Element Method, 3rd Ed., McGraw-Hill, London (1977). 
2 R. H. Gallagher, Finite Element Analysis Fundamentals, Prentice -Hall, Englewood Cliffs, New Jersey 
(1975). 
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induced stresses. Further, it is possible with the finite element method 
to calculate the value of stresses in all locations with a completeness that 
is difficult to accomplish experimentally. 

The final paper, by R. C. Bauder, describes how heat flow and the 
accompanying thermally -induced stresses in 25 -megawatt vacuum - 
power -tube anodes and neutral beam absorbers have been analyzed to 
optimize the design of these devices. These items will be an integral part 
of the fusion energy research facilities of the Princeton Plasma Physics 
Laboratory. In this approach, the hydrogen plasma must be ignited and 
maintained at very high temperatures (approximately 100 million de- 
grees Centigrade) for several seconds for a useful reaction to occur. The 
neutral beam source used to initiate the reaction must be switched at 
200 kilovolts and at high current levels using the large vacuum switch 
tube. The non -neutralized part of the beam is diverted magnetically and 
must be absorbed in a heat dissipating device. Such large and complex 
structures would be difficult or virtually impossible to analyze accurately 
if the finite element method were not employed. 

It is a pleasure to acknowledge the close collaboration of W. Metzger 
and A. Sheffler, R. Bauder and R. Pschunder in the preparations for the 
symposium at which these papers were delivered. 

Ronald E. Enstrom 
Symposium Chairman 
RCA Laboratories 
Princeton, N.J. 
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An Overview of Finite Element Methods and Their 
Application to Engineering Problems 

A. Sheffler 

RCA Astro -Electronics, Princeton, N.J. 08540 

Abstract-This paper gives a brief discussion of the fundamental theory of finite element 
methods, from which the strengths and weaknesses of the method can be seen. 
The discussion is presented from the point of view of structural analysis, where 
the method was first developed and is so widely used today. Subsequent papers 

describe applications of the method in other areas. 

Introduction 

In recent years, the finite element method has developed into one of the 
most powerful analytical tools available to the research and design en- 
gineer. As such, its applications have grown in direct proportion to the 
growth of digital computer systems. The matrix equations used in the 
finite element method take full advantage of the computer's ability to 
handle large numerical solutions with ease and low cost. The wide range 
of applications result from the basic simplicity and versatility of the 
method. Basically, the finite element method can be viewed as a set of 
building blocks, or elements, that are joined to form a model of the 
physical system. This paper presents an short overview of this method 
from the generation of the elements to the assembly of the system and 
its application to specific problems. 

The finite element method is presented here from the point of view 
of the structural analyst. This is appropriate since the method was pri- 
manly developed to aid in structural design and analysis in the aerospace 
industry. For example, the initial work by Turner et alt and by Argyus2 
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was used in the design of complex aircraft wing structures, while Alley 
and Gerringer3 developed methods for spacecraft launch vehicle designs. 
Since this development, the finite element method has been applied to 
fluid dynamics problems, pollution control studies, and conductive heat 
transfer. For simplicity and clarity, however, this discussion will be 
limited to applications in structural mechanics. 

Technical Discussion 

In the solution of a structural analysis problem, such as the load/de- 
flections case, the analyst has the choice of solving the equilibrium 
equations by exact analytical solutions or by using various numerical 
techniques. In general, the numerical techniques can provide more 
general solutions than the closed -form analytical solutions. With nu- 
merical techniques, computer solutions require an organized, systematic 
way of handling the analysis. This leads to the use of a system of nodes, 
as in Fig. 1, with nodal numbering systems and a system of meshes to 
connect these nodes in specific ways. The employment of a numerical 
mesh, however, does not necessarily imply a finite element solution. The 
same mesh technique may be used for the direct numerical solution of 
the differential equations. For example, the finite difference technique 
with its nodes and meshes is widely used in heat transfer analysis to solve 
the system equilibrium equations. The distinguishing characteristic of 

y 

x 

Fig. 1-System of meshes and nodes used in loads/deflections problem. 
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the finite element method is that is uses an element that is itself in total 
equilibrium. Thus, you have an element, or even a library of elements, 
that can be assembled to form a system that is in equilibrium. In this 
system, the nodal force and displacement are related by F = k 0, where 
F is the force, A is the displacement, and k is the stiffness. Accordingly, 
the matrix of simultaneous equations can be solved for either the forces 
or the displacement. 

The finite element method can be separated into two general cate- 
gories. First there is the force method which has the capability of gen- 
erating the flexibility matrix of a system. Unfortunately, the force 
method does not lend itself to easy application using digital computers 
because the data preparation required is quite extensive. In this method, 
each problem has to be unique. In particular, if the problem includes a 

statically indeterminate structure, the analyst needs to be careful when 
chosing the determinate and indeterminate degrees of freedom. In this 
situation, it is possible (or probable) that the flexibility matrix generated 
will be singular. For example, when the force method was initially used 
in aircraft structural analysis, it was common to have teams of analysts 
who were specialists in its use. A fuselage or wing structure, which is 

highly redundant, required careful selection of determinate and inde- 
terminate degrees of freedom in a particular analysis. The entire spe- 
cialty group was established to define the computer input for the force 
method. 

In contrast to the force method, the displacement method of finite 
element analysis generates the stiffness matrix of the system. It has been 
shown2 that a one-to-one analogy exists between the stiffness method 
and the force method. And not surprisingly, it has the same types of 
problems, i.e., it is not necessarily directly programmable for all situa- 
tions. 

A breakthrough in the use of finite element methods came with the 
development of the direct stiffness method.1"4 Thís method has become 
so powerful that today when we refer to finite element methods, we are 
generally talking about the direct stiffness method. With this method 
it is possible to generate a library of elements that can, in turn, be used 
to generate the stiffness matrix of the entire system without regard to 
whether it is statically determinate or statically indeterminate. Put 
another way, it is possible to program the entire structural system by 

following a regular pattern in assembling the element stiffness matrices. 
The real advantage of the method is its complete independence of the 
boundary conditions. 

In general, the finite element method (specifically, the direct stiffness 
method) can be defined as a process or a series of steps used to generate 
an element or several elements and to combine these elements to form 
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a system. Numerically, this results in a system of linear equations in 
matrix form. The unique feature of the finite element method is that each 
element has a finite number of unknowns. This means the strain energy 
(or everything that is going on in that element) can be obtained if one 
knows the deflections at the node points. This finite set of unknowns (the 
nodal deflections) is what sets the method apart as being a "finite ele- 
ment" system. 

As shown in Fig. 2, several types of compatible elements can be com- 
bined from the finite element computer libraries available today. You 
can put together, for example, beam elements, triangular plates, and 
quad plates, and build up a system that represents the actual structure. 
No matter how complicated the system, each of the elements follows the 
simple equation 

(Pe} = ike}(ue) 
where {pe} is the nodal forces on the element, Ike} is the element stiffness 
matrix, and;ue} represents nodal deflection. This equation simply re- 
minds us that the load has to be equal to the spring rate times the de- 
flection. Thus one is always dealing with a simple linear equation in 
matrix form. 

Bor 

Beam 

Triangular; 
constant 
strain 

Triangular; 
linear 
strain 

1 2 

1 
p 

2 

{De} = [ke] {ue} 

¡-LNODAL DEFLECTION 

ELEMENT STIFFNESS MATRIX 

Quadrilateral; 
plane stress 

Rectangular; 
bending 

Triangular; 
bending 

- NODAL FORCES ON ELEMENT 

Fig. 2-Compatible elements used In finite element method. These elements are available 
in standard computer programs. 
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The Finite Element Process 

Fig. 3 summarizes the finite element method as a process, or series of 
analytical steps. The left side of the figure shows the steps the user has 
to control, i.e., where engineering judgement is involved. The right side 
of the figure shows the programmed computer operations. The first step, 
therefore, is to select the nodes and the elements. The small sketches 
in Fig. 3 illustrate a typical system in three-dimensional coordinates. 
The material properties are chosen according to the type of material 
being used. Isotropic, orthotropic, or anisotropic materials all follow the 
same pattern, which again illustrates the wide application of this 
method. 

Before proceeding through the analysis, it is best to consider what the 
end product will be and to compare that result with what we need from 
the analysis. Unless proper judgement is used in defining a model, costly 
re -work may result. For example, if known point loads exist, it is desir- 
able to have a locally refined grid spacing and to use the proper types 
of element. In this case, good judgement and many iterations in this first 
loop are required. It is extremely costly and time-consuming to have to 
go back and redefine the model. Failure to spend the time necessary to 
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SELECT ELEMENTS 

Y 

GEOMETRY AND 

MATERIAL PROPERTIES 
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BOUNDARY CONDITIONSI 

APPLIED LOADS 
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Fig. 3-Finite element analysis sequence. Left side of the figure shows steps the user has 

to control; right side shows programmed computer operations. 
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generate an adequate model is an error often made by new users, and its 
importance cannot be stressed too strongly. 

The finite element process begins with the generation of each of the 
elements, whether they are rectangular or triangular plate elements, as 
shown in the first step of Fig. 3, or any of the other elements available 
today. A subtle point to keep in mind, however, is that each of these el- 
ements is generated in its own local coordinate system. To be useful, the 
element stiffness matrix has to be transferred into the system coordinates 
(Fig. 3, step 2). This requires a coordinate transformation and a nodal 
renumbering operation on the element. This operation is straight -for- 
ward, but is must not be overlooked when interpreting the results. When 
the element stiffness matrix is transformed into the system coordinates 
format, the elements are summed to form a system. Eq. [A] in Fig. 3 is 
an oversimplified example of this operation. As can be seen, the stiffness 
matrices for each of the elements are summed according to the degrees 
of freedom of that element. The task is not an easy one because it in- 
volves keeping track of all the degrees of freedom of that element in the 
system coordinates. The illustration shown in Fig. 3 ís greatly simplified, 
as previously stated, but it does show that the summation occurs where 
the stiffness matrices of each element overlap. As these terms are added, 
they form a stiffness matrix for the system. Eq. A in Fig. 3 illustrates the 
stiffness matrix for an unrestrained system. 

The final step in the process is the imposition of boundary conditions 
on the structure. Boundary conditions would be applied if certain points 
are restrained from having any displacement or rotation. In the direct 
stiffness method, statically determinate and statically indeterminate 
structures produce no difference in the analysis. The system stiffness 
matrix is simply partitioned according to the restrained degrees of 
freedom and the free degrees of freedom. These free degrees of freedom 
then form the stiffness matrix for the constrained system. Once this 
system stiffness matrix has been generated, its inverse can be deter- 
mined, as illustrated in Fig. 3, and combined with a given set of loads to 
produce the nodal deflections in the system model. 

Commercial Computer Programs Available to Users 

There are several analysis programs, such as NASTRAN, STARDYNE, 
and STRUDL, that follow the type of sequence illustrated in Fig. 3. This 
sequence involves going from the element stiffness matrices to a system 
stiffness matrix, and finally to the application of boundary conditions. 
Typically, these operations are done in the active core of the comput- 
er. 

Programs such as ANSYS, on the other hand, utilize an approach 
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called a wavefront solution. The approach is the same -as shown in Fig. 

3, except that the specified boundary conditions and a Gaussian elimi- 
nation technique are used to eliminate the restrained degrees of freedom 
on a one -for -one basis. As the program generates the stiffness matrix for 

each element, the boundary conditions are applied, and the reduced 
element is stored in external storage. These programs obviously require 
different formulations. In NASTRAN or STARDYNE, for example, you 

would want to have a nodal numbering system that results in a minimum 
bandwidth on the stiffness matrix, as illustrated in Fig. 3. These types 
of programs take advantage of the small bandwidth in the matrix in- 
version techniques. With ANSYS, on the other hand, the user would 

want to be careful of the element numbering system (rather than the 
nodal numbering system) so that the Gaussian elimination, or wavefront 
solution, is minimized. The end product from any of these programs is 

a single stiffness matrix for the entire system. With this stiffness matrix, 
the analyst can determine the structural deflections, load distributions, 
stresses, and even natural frequencies and mode shapes. 

The Element Stiffness Matrix 

The heart of the finite element method is the generation of the stiffness 
matrix for a single element. As discussed in the literature,5.6 there are 
several ways of generating these element stiffness matrices. Fig. 4 shows 

the four basic approaches. The unit displacement, Fig. 4(a), ís based on 

defining the loads necessary to produce a single unit degree of freedom. 
The forces required to produce this unit deflection produce the stiffness 

UNIT OF DISPLACEMENT THEOREM 

SOLUTION OF EQUILIBRIUM 

CASTIGLIANO'S THEOREM (STRAIN ENERGY) 

MINIMUM OF THE TOTAL POTENTIAL II -U-M- T 

Fig. 4-Approaches for generating the element stiffness matrix. 

(a) 

(c) 

(a) 
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matrix directly. By proceeding through all the degrees of freedom on the 
element, the entire element stiffness matrix is generated. The second 
method, Fig. 4(b), involves the solution of the equilibrium equations and 
leads to the same direct stiffness approach. 

Castagliano's theorem, Fig. 4(c), is a strain energy method that has 
a broad application to the development of an element stiffness matrix. 
An even more general approach that is widely used is the Minimum of 
the Total Potential, Fig. 4(d). Here, the total potential is a function of 
the strain energy, the work of the external loads, and the kinematic en- 
ergy. This method is the one most widely used. In general, the user does 
not generate the elements, but we need to know how they work and their 
limitations. For clarity, I have chosen in Fig. 5 to consider a static analysis 
where the total potential is a function of only the strain energy and the 
external work done by the applied loads. The primary drawback of this 
method is in accurately determining the strain energy. Just as in the 
commonly used Raleigh-Ritz method, a deformed shape function must 
be assumed in order to obtain an expression for the strain energy. Typical 
shape functions are the polynomials given in Fig. 5. Also, various oscu- 
lating polynomials, such as Hermitian polynomials, have been used with 
good results.7'8 This is an approximation, however, just as in all strain 
energy work. The finite element techniques based on these methods, 
therefore, are only as good as the shape functions that are used. 

As in basic mechanics, if the shape function matches the actual system 
perfectly, then the calculated strain energy will be accurate. If there is 
any mismatch on either side of the true deflection patterns, then some 
higher strain energy exists in the math model. This higher strain energy 
implies that you have a stiffer system, which results in smaller deflections 
for given loads. Finite element techniques will always lead to stiffer 

íI - U - 

ww 

`EXTERNAL WORK 

LSTRA.N ENERGY 

1 -TOTAL POTENTIAL 

STRAIN ENERGY APPROXIMATION: 

ASSUMED SHAPE FUNCTIONS: 
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Fig. 5-Generation of element stiffness matrix using minimum of total potential approach 
(static analysis). 
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systems if they are based on a strain energy approach. Therefore, since 
the method approaches the "true" solution from the stiff side, it becomes 
important to know how good these shape functions are. Fortunately, over 
the years, these techniques have been developed into a highly reliable 
method. All of the commercially available programs can be relied upon 
as being accurate, dependable systems. 

Stress Analysis and the Element Shape Function 

Let us now recall that the finite element method, as it is used in a static 
analysis, has as its basic output the calculation of the deflections. If 
stresses are to be determined, it is necessary to go back to the element 
stiffness matrix. This depends, once again, on the element shape func- 
tions. For example, if it is necessary to determine stresses due to the 
applied loads in a particular element in the model, the first calculation 
is of the deflections of the system. Once the distortions of the element 
are determined, the stresses are calculated using the element stiffness 
matrix. Thus, the stress analysis is highly dependent on the accuracy 
of the element shape function. Isoparametric elements are higher order 
and lead to stresses closer to the actual values. It is best to be conservative 
at this point. One should place a large number of elements in any area 
where rapidly changing stress patterns occur and gradually increase the 
element size as the stress gradient decreases. This procedure requires 
experience and judgment. Further, choose a high order element where 
possible. Frequently, a smaller number of isoparametric elements6 can 
give a better solution than a larger number of lower order elements. 

Dynamic Analysis Based on Finite Element Techniques 

In terms of dynamic analysis, the finite element method produces a 
powerful tool for the modal analysis of a system. Modal analysis produces 
the frequencies, mode shapes, modal forces, and the generalized mass 
of the dynamic system. The main part of this eigenvalue process is in 
determining the frequencies and mode shapes derived from the stiffness 
and mass matrices. With these modal characteristics, the harmonic, 
random, acoustic, and transient response analysis can be carried out by 
a number of normal mode methods. These normal mode methods are 
built into the commercially available programs, or the modal charac- 
teristics can be used in other special purpose dynamic analysis programs. 
In either case, the finite element model is the primary tool for generating 
the modal properties. This model produces both the stiffness and mass 
matrices and must be able to produce accurate mode shapes over a wide 
frequency range. This is especially true when calculating loads and 

630 RCA Review Vol. 39 December 1978 



AN OVERVIEW 

stresses where a significant number of modes must be superimposed for 
accurate results. So, once again, in setting up a dynamic model, good 
judgement and planning is required to obtain accurate results. 

Summary 

The broad application of finite element methods in structural mechanics 
includes the analysis of static deflections, stress distributions, as well 
as modal and dynamic responses analyses. This full range of analytical 
tools stems from the development of relatively few analytical building 
blocks, called finite elements. When assembled to model the actual 
structure, these elements can readily account for unusual geometry, 
loading, and boundary conditions. They can provide sufficient accuracy 
to obtain low cost design verification and test predictions. As a result, 
the finite element technique has become firmly established as an ana- 
lytical tool to aid in the design process. 
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Finite Element Methods in Spacecraft Dynamic 
Analysis 

G. Niederoest 

RCA Astro -Electronics, Princeton, N.J. 08540 

Abstract-A spacecraft dynamic analysis is required for the accurate prediction of the 

spacecraft dynamic characteristics such as modal frequencies and responses 

and their effect on the overall launch vehicle. This paper presents the techniques 

used at the RCA Space Center as applied to the TIROS -N meterorological 

spacecraft. The technique consists of a loads generating cycle and a loads veri- 

fication cycle. The loads generating cycle involves the development of an accurate 

finite element model which is then used to determine the spacecraft responses 

due to the launch environment loads. The load verification cycle is used to verify 

that the loads generated for the launch environment and for which the spacecraft 

structure has been designed are adequate and, therefore, proves structural in- 

tegrity. 

Introduction 

Several years ago, a typical spacecraft dynamic analysis consisted of 
attempting to reduce the stiffness and mass characteristics of a space- 
craft into a few -degrees -of -freedom system and solving for the first modal 

frequencies. Dynamic responses of discrete points on the spacecraft were 

more difficult to obtain and required the use of a mechanical test model. 

Since that time, however, a revolution in computer technology has al- 

lowed mathematical modeling of multi -degree -of -freedom systems to 

become a quick and accurate method in solving for modal and dynamic 
responses of complex structures. Mathematical modeling by the finite 
element technique has become a required practice in many industries, 
in particular the aerospace industry, where it is of prime importance in 
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Fig. 1-Spacecraft dynamic analysis. 

understanding the dynamic characteristics of a spacecraft and its effect 
on the overall launch vehicle. It is used to predict the flight level loads 
in the structure, perform the actual stress analysis of each structural 
component (i.e., equipment and solar panels), and, in addition, allows 
the tailoring of environmental test loads so that actual flight occurrences 
are simulated during the testing phase without overstressing the struc- 
ture. 

The flow diagram in Fig. 1 is that of a typical spacecraft dynamic 
analysis. The analysis basically consists of two cycles; (1) the loads 
generating cycle in which the structural loads that are predicted to occur 
during the space vehicle's lifetime are analyzed and (2) the loads veri- 
fication cycle which is used to verify structural integrity. 

2. Loads Generating Cycle 

Fig. 2 shows typical flight dynamic loads that the spacecraft must be 
designed to withstand. These loads occur very early in the launch se- 
quence, and this, therefore, is the most critical time for the space vehicle. 
The environmental test loads, also shown in Fig. 2, are used in the loads 
verification cycle of the spacecraft. The structural loads simulated by 
the environmental test loads are generally much higher than those that 
occur during actual flight, though low enough to preclude any structural 
failure. 
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Fig. 2-Dynamic analysis design loads. 

2.1 Model Definition 

The accuracy of any dynamic analysis is directly related to the quality 
of the finite element model and is, therefore, the prime factor in ob- 
taining satisfactory results. The three basic considerations in the syn- 
thesis of a finite element model are stiffness distribution, mass distri- 
bution, and boundary conditions. Neglecting any of these considerations 
will result in a model that is not dynamically similar to the actual 
structure. Therefore, a detailed evaluation of all major structural com- 
ponents must be made to determine the degree of sophistication required 
to accurately model each component. This should include all joints, mass 
and stiffness eccentricities, indeterminate load paths, and any forseeable 
nonlinearities that might exist in the structure. In addition, the mass 
and inertia points that will yield the closest approximation to the actual 
hardware layout must be determined. This process includes everything 
from simple point masses to complex mass/spring models to accurately 
simulate events such as launch -vehicle fuel sloshing. 

Cost is also of concern to any analysis. Since computing costs are di- 
rectly related to the degree of detail of a finite element model, the desire 
to obtain the ultimate model must be tempered by an equally strong need 
to reduce the analysis cost by simplification. The trick is to generate a 

finite element model that is detailed enough to give acceptable results 
but that is not prohibitively costly to run. Two approaches are possible: 
(1) use a small number of large -size elements to accurately model the 
geometry or (2) use equivalent masses and stiffnesses that describe 
mechanical behavior of the object but that do not necessarily bear a close 
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physical resemblance to the structure. In the work described here, the 
second approach was taken to reduce the cost while achieving an accurate 
solution. Substructuring is an important tool for this purpose. An im- 
portant benefit of this approach is reduced throughput time so that 
modeling changes and reruns can be made in a short period of time. 
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RSS--Reaction Control Equipment Support 
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Fig. 3-TIROS-N spacecraft dynamic finite element model. 
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This type of finite element model is illustrated in Fig. 3. The spacecraft 
depicted is the NASA funded, RCA built, TIROS -N meteorological 
spacecraft. The figure shows the prime structrual components of the 
spacecraft and how each is modeled. The finite element model consists 
of the Instrument Mounting Platform (IMP), an Equipment Support 
Module (ESM) made of honeycomb panels attached to a pentagonal 
shaped frame, a space truss that attaches the ESM to the Reaction 
Control Equipment Support Structure (RSS), the cylindrical Reaction 
Control Equipment Support Structure, and, finally, a conical adapter. 
The cone adapts the spacecraft to the launch vehicle. 

The IMP is modeled as a series of beams with equivalent bending and 
shear properties and mass distribution to accurately model the first two 
bending modes of the panel (determined by previous analysis). The IMP 
is attached to the ESM by means of a statically determinant strut system 
which is represented by beams. The stiffness properties of the ESM and 
RSS are modeled as beams with offset masses to account for the non - 
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symmetric mass distribution on these components. Additionally, note 
that the neutral axes of the RSS and ESM are offset from each other, 
similar to the actual hardware. This is also the case with the IMP and 
ESM. Simple beam theory, however, cannot be used to model the com- 
plicated deflection characteristics of the truss and conical adapter. Fig. 
4 shows what occurs to the cone by the application of a shear and moment 

TRUSS 

p-r. 
& - \ 

CONE 

Fig. 4-Truss/cone substructures. These substructures cannot be accurately modeled with 
a simple beam. As shown for the cone, the rotation due to the shear load and the 

deflection due to the applied moment are opposite to that predicted by simple 
beam theory. 

load. The rotation due to the shear load and the deflection due to the 
applied moment are opposite to that predicted by simple beam theory. 
This phenomenon is more complex for the truss due to its nonsymmet- 
rical stiffness characteristics. Therefore, these items are modeled as 
substructures with reduced stiffness matrices from a detailed component 
finite element model for convenient input to the spacecraft model. Joint 
compliance of riveted, bolted, or Marmon clamp joints are represented 
by zero length springs. These joints can have a significant effect on the 
spacecraft dynamics and, therefore, must be considered in order to ob- 
tain reasonable results from the finite element mode. 

2.2 Modal Analysis 

The next step in the dynamic analysis is to determine the modal char- 
acteristics of the fixed base spacecraft. This is done by a modal analysis. 
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The modal analysis actually serves two functions. First and most im- 
portant, it calculates the spacecraft undamped natural frequencies and 
their associated modal deflections and loads. This data will be used in 
the forced response analysis to calculate nodal displacements and ac- 
celerations and element loads. The modal analysis additionally serves 
as a check on the modeling techniques used in the model generation 
phase. The calculated frequencies and mode shapes are key elements 
to be used for a feasibility check of the model. Any inconsistencies should 
be evaluated for their effect on the subsequent response analysis and 
corrected if necessary. The modal analysis results are used to do a pre- 
liminary sizing, based on stiffness requirements, of the primary structure. 
Generally, this involves several iterative steps until the desired results 
are obtained. Typically, the spacecraft should have a fundamental fre- 
quency high enough to minimize launch vehicle coupling and should 
exhibit a good frequency separation between the higher modes of the 
spacecraft and the major structural components. Therefore, the modal 
analysis phase usually means generating several finite element models 
in addition to the model shown in Fig. 3 (i.e., equipment, solar panels, 
etc.) and a separate modal analysis of each. 

The modal analysis calculates the system natural frequencies and 
mode shapes by solving the equations of motion for a multi -degree -of - 
freedom system. To do this, it must calculate the mass and stiffness 
matrices of each element from the defined geometry data and formulate 
the equation of motion as follows* 

[K] - wr2[mllOr [ = 0 [1] 

where: [KJ = system stiffness matrix. 
[m] = diagonal mass matrix. 
wr = the rth eigenvalue. 
4r = the rth eigenvector. 

Since some of the terms of the diagonal of the mass matrix could be zero, 
the program sorts and partitions the matrix into dependent and inde- 
pendent coordinates. Eq. [1] becomes 

K11 K121 0 
{o," 

K21 K22J - Wr2 
¡0 
to 

l 
M22J 102(r) O 

[21 

where the subscript 1 is associated with the dependent coordinates (i.e., 
those terms associated with zero mass elements) and the subscript 2 is 
associated with the independent coordinates (i.e., those terms as- 

' MRI/STARDYNE Theoretical Manual, Control Data Cybernet Services, Revision A. 
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sociated with non -zero mass elements). Two equations can be generated 
from Eq. [2]: 

[K11101" + [K12102(r) = 0 131 

and 

[K211011r) + [K22102(') - wr2[M22102" = 0 

If Eq. [3] is rearranged as 

01" = 

and substituted into Eq. [4], we obtain 

[K21](-[K11]-1[K121b2r)) + [K22].2(') - Wr2[M22102" = 0. 

Rearranging and collecting like terms of o2(r)gives: 

([K221 - [K21][K11]-1[K121)021r) - wr2[M22[02" = 0. [5] 

In this equation, let 

1K22*1 = [K22] - [K211[1(.11] 1[K121, 

such that the following result is obtained: 

(1K22*1 - wr2[M221)021r) = O. 

[4] 

[6] 

Eq. [6] contains only the independent coordinates or the dynamic degrees 
of freedom. _These are the degrees of freedom in the finite element model 

that have mass. Eq. [1] has, therefore, been reduced by elimination of 
all unnecessary degrees of freedom for the solution of the problem. This 
improves the quality as well as the efficiency with which the solution 
itself is performed. The following transformation is performed in order 
to obtain the necessary form of Eq. [6] for an extraction routine: 

452(x) = 1M221-1/2u(r). 

Substituting this into Eq. 16] and premultiplying both sides of the 
equation by 1M221-1/2 gives 

(1M221-1/21K22`11M221-1/2 - wr2[I1)u(r) = 0. 

By letting 

[K'1 = [M221-1/2[K*10M221-1/2, 

Eq. [7] can be written as 

([K1- wr2[I])u(r) = 0. 

Eq. [8] is the desired form of the dynamic equation. 
Fig. 5 (top) gives the mode shapes and their associated frequencies 

[71 

[81 
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Fig. 5-(Top) Mode shapes and associated frequencies for TIROS -N spacecraft and (bottom) 
frequency versus acceleration plots used to determine cross coupling between 
orthogonal axes. 
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of the TIROS -N spacecraft. The first two modes are the fundamental 
bending modes in each lateral direction. Modes 3 and 4 are the IMP 
bending modes. Modes 5 through 9 are combined bending of the space- 
craft and IMP, and finally, mode 10 is the first thrust mode of the 
spacecraft. A sinusoidal lg base excitation response analysis is then done, 
with typical results as shown in Fig. 5 (bottom). These frequency versus 
acceleration plots are used to determine the amounts of cross coupling 
between the orthogonal axis for each axis excitation. As shown by the 
curve in Fig. 5 for X axis excitation, the TIROS -N spacecraft exhibits 
some degree of cross -coupling between the Y and Z axes; the amount 

HEATSHIELD 

///,1\1 

SPACECRAFT 

Y 

1 \ 
1 1 

1 1 

MODE I MODE 2 MODE 3 MODE 4 MODE 5 

Fig. 7-Launch vehicle mode shapes (free -free) for lift-off mass distribution. 
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varies at each natural frequency. Generally, it is best to keep the axis 
cross -coupling to a minimum. However, due to the nonsymmetrical mass 
and stiffness distribution of a spacecraft such as the TIROS -N, this is 
not always possible or practical. 

2.3 Flight Loads Analysis 

Once the results of the spacecraft modal analysis are known, the flight 
level responses due to the flight dynamic loads shown in Fíg. 2 can be 
calculated. This involves combining the finite element models of the 
spacecraft with the overall launch vehicle. A typical loads analysis is 
shown in Fig. 6. Since each flight event occurs at a different time during 
the launch, the mass distribution of the finite element model will change. 
Therefore, each event requires a separate modal analysis. The results 
of the modal analysis are then used to develop the flight level responses 
for each flight event. Fig. 7 shows the launch -vehicle modes'for the lift-off 
condition. Modes 1 and 2 are the fundamental bending modes of the 
launch vehicle in each lateral direction. Modes 3 and 4 are the spacecraft 
lateral bending modes and mode 5 is the launch vehicle thrust mode. The 
results of the launch loads analysis is a loads summary. This summary 
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includes spacecraft member loads, critical heatshield clearances, and 
nodal time history plots for each of the flight events. Fig. 8 shows the 
results of the TIROS -N launch -vehicle loads analysis. Based on these 
loads, a dynamic analysis is done for each component of the spacecraft, 
such as the equipment and solar panels as illustrated in Fig. 9. The 
component dynamic analysis and subsequent stress analysis complete 
the loads generating cycle. 

3. Loads Verification Cycle 

In the loads verification cycle, the spacecraft finite element model is used 
to determine realistic input levels, based on the launch -vehicle loads 
analysis, for a sinusoidal base excitation test. This test is required to 
verify that the structure is flight ready. Fig. 10 gives a sinusoidal vibra- 
tion test specification for the TIROS -N spacecraft. The input level given, 
however, will greatly overload portions of the structure. Since the 
structure is designed to withstand flight level responses, with appropriate 
factors of safety, it should not have to withstand loads that are unreal- 
istically high. Therefore, the test input levels shown in Fig. 10 are allowed 
to be lowered or notched at critical spacecraft frequencies. 

The finite element model is a perfect tool to determine what these 
notched test levels must be. This is done by calculating the qualification 
level loads at critical points on the spacecraft and comparing these with 
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the loads developed during the loads generating cycles. The critical areas 
for the TIROS -N spacecraft are the separation plane and IMP struts. 
Figs. 11 through 14 show the base input g limits required at each of these 
points so that overloading does not occur. The g spectrum that is less 
than the qualification level specification, given in Figure 10, will require 
notching limits during the test. The results of Figures 11 through 14 are 
summarized in Fig. 15a. This figure shows at what frequency and to what 
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separation plane shear is produced. These results can easily be verified 
by comparison with the mode shapes shown in Fig. 5a. 

The plots of acceleration versus frequency shown in Fig. 15b are the 
enveloped results given in Fig. 15a and are used as input for the sinus- 
oidal test in the X axis. A similar procedure results in the other axes test 
specification. These test levels are then applied to the finite element 
model in order to determine the predicted response levels of the space- 
craft for direct comparison with the test results. Fig. 16 gives the pre- 
dicted test level responses for the TIROS -N spacecraft and several lo- 
cations of the structure. Since the actual test of the spacecraft has been 
completed, the corresponding test response levels can be compared. Fig. 
17 gives the actual test level responses at the IMP corner and main strut 
and at the ESM top. As the figure shows, a good agreement exists be- 
tween test and analysis results given in Fig. 16. Some differences can be 
expected due to the structure damping assumptions used for the anal- 
ysis. 
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Variational and Finite Element Methods in 
Structural Analysis* 

Theodore H. H. Pian 

Professor of Aeronautics and Astronautics, Massachusetts Institute of 
Technology, Cambridge, Mass. 02139 

Abstract-The paper presents a brief survey of the various finite element models derived 
by the conventional variational principles in -structural mechanics and by several 
modified variational principles which permit the relaxation of condition of dis- 
placement continuity or traction reciprocity along the interelement boundaries. 
The use of the various finite element models is illustrated by their convenience 
in formulating plate and shell elements, by the reduction of constraints that may 

appear in limiting cases in assumed displacement methods, and by the construction 

of special elements for problems with stress singularities. Rationalization in in- 

cremental formulation of nonlinear problems can also be obtained by variational 
approach. 

1. Introduction 

Nearly a quarter of a century ago, Jon Turner of the Boeing Company 
presented a paper' entitled "Stiffness and Deflection Analysis of 
Complex Structures." The new method he introduced at that meeting 
was developed for static and dynamic analysis of aircraft structures. It 
was an extension of the matrix displacement method traditionally based 
on stiffness matrices of bars and beams. The method by Turner and his 
associates was developed to apply to continuous structures that are 
discretized into a finite number of elements. Professor Argyris2 at the 

This paper was presented by Professor Plan at an RCA Finite Element Symposium held at RCA Lab- 
oratories, Princeton, N.J. on March 13-14, 1978. It has also been published in the Israel Journal of 
Technology, Vol. 16, Nos. 1-2, pp. 23-33, 1978. 
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same time also published in Aircraft Engineering a method for deter- 
mining element stiffness matrices of panels under membrane stress 
based on energy principles. These early pioneering works can now be 
rationally interpreted as a Rayleigh -Ritz method in conjunction with 
the principle of virtual work or the principle of minimum potential en- 
ergy. The method is, of course, the well-known finite element method, 
which has now been extended to all types of structural and solid me- 
chanics and to many other problems in continuum mechanics. In addi- 
tion to the conventional approach based on assumed displacements and 
the potential energy principle, alternative approaches and improved 
methods have been developed. Indeed, large portions of these ad- 
vancements were motivated by the development in aerospace structural 
technology. The rapid progress in the development of finite element 
methods owes much, of course, to the rapid advancement of high-speed 
automatic digital computers during the last quarter of a century. It is 
the author's opinion, however, that the advancement in the finite ele- 
ment method is also due largely to its wide mathematical basis. In ad- 
dition to the formulations by this principle, improved finite element 
methods can be derived by other variational principles, many of which 
are modifications of conventional variational principles, by relaxing the 
continuity requirement along the interelement boundary.3-5 In this 
paper, a brief outline will be given of this expanded domain of finite el- 
ement methods. 

It was recognized since the very early days in the development of finite 
element methods that some difficulties exist in the assumed displace- 
ment approach. When problems in plane elasticity were extended to 
bending of thin plates, it was found difficult to construct shape functions 
that are compatible for the lateral displacement w as well as its normal 
slope w,,, along the interelement boundaries. Another recognized 
drawback in the assumed displacement approach is the loss of accuracy 
in stresses when evaluated by derivatives of displacements. For many 
limiting cases in solid mechanics, the existence of certain conditions of 
constraints will require alternative methods of formulation. For example, 
when the assumed displacement finite element method was first used 
to analyze solid propellents it became evident that for a nearly incom- 
pressible material, for which the dilatation approaches zero, the con- 
ventional finite element model may become extremely stiff. Of course, 
in the case of an incompressible material the condition of zero dilatation 
must be introduced to modify the principle of minimum potential energy 
and hence to change the finite element formulations. Finally, it has been 
proved that for problems involving stress singularities, the use of con- 
ventional elements will lead to extremely slow convergence for the so- 
lutions. 
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In the main part of this paper some examples will he given to illustrate 
how the difficulties listed above can be overcome by finite element for- 
mulations based on alternative variational principles. Finally, some brief 
remarks will be made on the variational formulation of nonlinear 
structural mechanics problems. 

2. Variational Principles for Finite Element Methods 

The variational principles for finite element methods can be described 
by the flow diagram for small deflection theory of elastostatics shown 
in Fig. 1. The upper part of the figure shows the conventional variational 
principles. Starting from the principle of virtual work, one can derive 
the principle of minimum potential energy, with the variational func- 
tional irk, which contains displacement components as the only field 
variables. The conventional finite element formulation is simply a 
Rayleigh -Ritz method using piecewise assumed shape functions with 

CONVENTIONAL VARIATIONAL PRINCIPLES IN STRUCTURAL MECHANICS 
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Fig. 1-Flow diagram for variational formulation of finite element methods. 
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nodal displacements q as generalized coordinates. The final equation 
is of the form 

Kq=Q [1] 

were K is the assembled stiffness matrix of the structure and Q, the as- 
sembled vector of equivalent nodal forces. This is, of course, a matrix 
displacement method; when the shape functions are compatible along 
the interelement boundaries, the corresponding finite element nodal is 
named the compatible model. 

By means of a most general Hu-Washizu Principle with stress, strain, 
and displacements as field variables, one can derive the well known 
Hellinger-Reissner Principle based on the variational functional irR 
which contains both stress and displacements as field variables. A cor- 
responding finite -element formulation would contain nodal values of 
stresses p and displacements q as unknowns. The final equation, which 
corresponds to the matrixmethod, is of the form 

l 

1 GT O 1 Iql IQI [2] 

where H, G and Q are again obtained by assembling the corresponding 
element matrices. The global matrix in Eq. [2] is nondefinite; hence the 
solution routines for many finite element analysis programs which are 
based on positive definite stiffness matrices cannot be readily used. 

Since in applying the Hellinger-Reissner principle it is not necessary 
to maintain the continuity of stresses or even the traction reciprocity 
along the interelement boundary, it is possible to approximate the 
stresses in terms of stress parameters that are independent from one 
element to the other. Such parameters can then be expressed in terms 
of the nodal displacements, and the resulting matrix equations will have 
only the nodal displacements as unknowns. It has been pointed out, 
however, by Fraeijs de Veubeke that without restrictive assumptions 
on the stresses, the last scheme will lead to the same result as the simple 
assumed displacement method.6 

When the stresses are equilibrating, the Hellinger-Reissner principle 
becomes the principle of minimum complementary energy, with the 
variational functional a, which contains stress functions as the field 
variables. The corresponding finite element methods can, of course, be 
developed with nodal values of stress functions as unknowns. The finite 
element model is called the equilibrium model. 

In applying the various variational principles for a solid continuum 
that is divided into finite elements, it is realized that certain disconti- 
nuity conditions along the interelement boundaries are allowed to the 
degree that the variational functionals exist. However, an even broader 
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extension of the variational methods lies on the possibility of further 
relaxation of the continuity conditions along the interelement boundaries 
by the introduction of interelement constraint conditions and the cor- 
responding Lagrangian multipliers. The modified variational principles 
thus contain the Lagrangian multipliers as additional boundary vari- 
ables. The new approach in finite element method, which involves in- 

dependent approximations of interior and boundary variables, is gen- 

erally called the hybrid formulation.? Because the parameters repre- 
senting the field variables for the interior of the elements are now in- 

dependent from one element to the other, they may be expressed in terms 
of the parameters in the element boundary by applying the variational 
principle in the element level. 

For example, a modified complementary energy principle based on 
a functional amc can be derived by introducing the traction reciprocity 
conditions as equations of constraint, and the corresponding Lagrange 
multipliers are the element boundary displacements. This modified 
principle then becomes a two field principle.8'9 In the finite element 
formulation the boundary displacements can be interpolated in terms 
of nodal displacements q, while the stresses in the element are approx- 
imated by stress parameters O. After eliminating S in the element level, 

the nodal displacements q become the only unknowns. This method is 

called the assumed stress hybrid method or simply hybrid stress model. 
This modified principle, however, can be utilized in a different way. If i 

the traction reciprocity condition are to be maintained while generalized 
boundary displacements are defined to represent the integrated effects, 
the resulting finite element method will only have such generalized 
displacements as unknowns. But it is then an equilibrium model.6 

The dual modified principle for potential energy based on the func- 
tional amp, is a two -field principle with tractions along the interelement 
boundaries as Lagrange multipliers.10 If in the finite element imple- 
mentation the displacement parameters in one element are independent 
of those in other elements, they can be eliminated in the element level 1 

and the resulting equations will contain only nodal stresses as unknowns. 
Thus it is a kind of matrix force method. 

A second modified potential energy principle based on amp, is to treat 
boundary displacements ü and interior displacement u as independent, 
and then to introduce boundary tractions T as Lagrange multipliers to 
maintain the compatibility at the element boundary.1' This becomes 
now a three -field principle. However, since both T and u in one element i 

may be independent of those in other elements, the finite element for- 
mulation may lead to final equations that contain only nodal displace- 
ments as unknowns. This model which is named hybrid displacement I 

model 2 is thus a matrix displacement method. A simplified version of 
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this principle based on rm+p3 is to introduce the relation between stresses 
and displacements to express T in terms of u.11,12 In the finite element 
formulation both u and ü may be expressed in terms of nodal displace- 
ments q and the resulting method is, of course, again a matrix dis- 
placement method. 

Many other possible variational principles can be formulated for the 
development of finite element methods. Knothe13 made a systematic 
classification of such possibilities. Wolf14 has implemented several 
generalized assumed stress models for finite element analysis. 

3. Plate and Shell Analysis 

One of the major difficulties in formulation of plate and shell elements 
by assumed displacement approach is the construction of shape func- 
tions that can maintain not only the compatibility of the lateral dis- 
placement w but also its normal slope w,,, at the interelement boundary. 
Indeed, one common objective of the various finite element models de- 
scribed in the previous section was to get around such difficulty. 

The assumed stress hybrid model was first demonstrated by a rec- 
tangular plane stress element15 but was immediately extended to thin 
plate elements.16-'9 Its versatility was illustrated by the fact that plate 
elements of any number of edges can be derived by essentially the same 
formulation.20 The hybrid stress model has also been used for plates with 
transverse shear effects and for laminated plates for which the transverse 
shear strains may be different in different layers.21 One important pre- 
caution to be made in the application of assumed stress models (for both 
hybrid stress model and equilibrium model) is to choose adequate 
numbers of stress parameters to avoid any kinematic modes in the in- 
dividual element. A necessary condition for such choice is that the 
number of stress parameters should be equal to or larger than the 
number of nodal displacements minus the number of rigid -body degrees 
of freedom.22 Unfortunately, these conditions are not sufficient. It has 
been demonstrated that for certain plate geometry the given limited 
stress terms will lead to zero work due to certain boundary displacements 
that do not correspond to a rigid body motion.15 Such deformation modes 
are obviously kinematic modes. 

The assumed displacement hybrid model based on r,,,p, was initially 
illustrated for plate and shell analyses by independent assumption for 
interior displacements and boundary tractions.23 A more logical scheme 
is to interpolate the displacements u of the element in terms of nodal 
displacements 4 by shape functions that maintain the compatibility of 
the displacement w but not of the normal slopes at the interelement 
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boundary. Lagrange multipliers A are then introduced to maintain such 
compatibility.24,25 The resulting matrix equations are in the form of 

(JO) (x) - (0) [31 

This is a mixed method that involves an indefinite matrix. The conver- 
gence of lrmpl, however, has been proved.26 In fact, by recognizing that 
the present problem is simply a constrained minimization of an original 
Ritz method, the required programming changes are very simple.24 The 
method has also been applied to the analysis of both linear and geo- 
metrically nonlinear problems of thin shells.27,28 

The modified potential energy principle based on 7rmP2 has been uti- 
lized to derive stiffness matrices of a rectangular flat plate element" and 
of a doubly curved quadrilateral element that forms a part of a general 
shell of revolution.29 The implementation of the finite element model 
is somewhat complicated because of the need to approximate three in- 
dividual sets of field variables, the element displacements, the boundary 
displacements, and the boundary tractions. It turns out that in several 
example problems in shells of revolution, the solutions in both dis- 
placements and stresses obtained by this assumed displacement hybrid 
model are identical to that by a compatible displacement model. The 
latter is, of course, easier to implement than the former. 

The simplified hybrid displacement model based on 71-mp3 is relatively 
easy to implement and it has been applied successfully to plates and 
shells of both quadrilateral and triangular shapes.12 It has also been 
extended to large deflection analysis of elastic plastic plates and shells. 
However, it has been demonstrated26 that a certain triangular plate el- 
ement derived by this model actually becomes unstable. Thus, caution 
is required in the application of this finite element model. 

The mixed model based on the Hellinger-Reissner principle is at- 
tractive for plate and shell elements because of the requirement of only 
C° continuity for the assumed out -of -plane displacement. It also has the 
feature of maintaining the continuity of stresses along the interelement 
boundaries. Hence it will, in general, provide better results in stresses 
than other finite element models. Most recent developments for this 
model include laminated composite plates and shells with transverse 
shear effect.31-33 Both quadrilateral and triangular elements have been 
developed for linear and geometrically nonlinear problems. For a given 
mesh size the number of unknowns by a mixed formulation is always 
larger than that by the conventional matrix displacement method. Thus, 
the advantage of better accuracy in stress evaluation is offset by the 
larger computing effort required. More efficient schemes using a sym- 
bolic and algebraic manipulation language such as MACSYMA have 
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been employed for the evaluation of numerous integrals in the element 
matrix formulation. Also, the number of numerical coefficients to be 
calculated can be considerably reduced by the use of the group -theoretic 
technique. Computing effort and storage required can also be relieved 
by efficient choice of the submatrix method.33 

4. Constraints in Conventional Assumed Displacement Methods 

In the formulation of the finite element method by assumed displace- 
ment approach, when in the limit case some conditions of constraint exist 
for the strain components, the principle of minimum potential energy 
is no longer applicable. In practice, even in the nearly limiting case, the 
conventional assumed displacement finite element may lead to very rigid 
element stiffness matrices and thus yield very inaccurate solutions. 

For example, for an incompressible material, the condition of con- 
straint is the vanishing of the mean strain. Thus in analyzing a problem 
of nearly incompressible material by the conventional assumed dis- 
placement method, the condition of zero dilatation may introduce a 
number of constraint conditions to the assumed displacements. Hence, 
the resulting element stiffness matrix may become extremely rigid. 

Another example is the derivation of element stiffness matrices for 
plates and shells taking into account transverse shear effect. The re- 
quirement of interelement continuity of normal derivative w,,, is replaced 
by that of boundary rotations which are now independent of w. The 
scheme would breakdown when the plates and shells are very thin, so 
that the condition of diminishing shear strain will introduce a severe 
constraint to the element displacements. A practical technique to reduce 
such constraints is to use reduced or selective numerical integration in 
the construction of the element stiffness matrices.34 

Another possible constraining condition exists for shell analysis. The 
total strain energy for shells may be separated into the stretching energy 
and the bending energy. Since shell elements are often formulated in 
such a manner that the constant strain states and the rigid body modes 
are not explicitly included in the assumed displacements, errors due to 
such incomplete representation are magnified in the stretching energy 
term by a factor proportional to the ratio of the radius of curvature of 
the shell to the thickness. Therefore for thin shells, the condition of 
vanishing of the stretching strain introduces further constraints to the 
assumed displacements. 

Effective remedies to these problems are the use of a modified version 
of the Hellinger-Reissner principle. In many structural mechanics 
problems the total strain energy can be separated into two parts re- 
spectively due to two strain vectors El and E2, where the latter is the one 
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that is to be constrained in the limiting case. In a modified variational 

principle, only the strain energy of the latter ís to be reduced to the form 

of the Hellinger-Reissner functional. The variational functional is thus 
in the form 

7rmR = ,1 1-2 E1TC1E1 + 0'2;2 - o2TS2021dV + W, [4] 

where a2 represents the stresses corresponding to E, C1 and S2 are the 
respective elastic constants, and W is potential energy due to applied 
load. The strains E1 and E2 are expressed in terms of displacements and, 
in the finite element formulation, they are represented by nodal dis- 

placements q. For example, in the variational functional proposed by 

Key35 for incompressible and nearly incompressible materials, E1 rep- 

resents deviatoric strains and E2 is the mean strain. 
In the finite element formulation, if a2 are represented by nodal values 

of stresses, a matrix mixed method results. However, if a2 are indepen- 
dent for the different elements, the resulting equation will have only 

nodal displacements as unknowns. Again, according to the limitation 
principle of Fraeije de Veubeke, this will be equivalent to the original 

assumed displacement method. It can be shown, however, that the 
number of equations of constraint to the displacement functions is equal 

to the number of stress parameters used to represent a2. Indeed, in 

solving problems of nearly incompressible materials using the functional 

of Key, it is necessary to use a lower approximation for the spherical 
strain energy.36 For plate and shell analysis, it turns out that by proper 
choice of the stress parameters the mixed formulation yields element 

stiffness matrices that are identical to that of the assumed displacement 
method using reduced or selective numerical integration.37-39 The mixed 

formulation derived from this version of the Hellinger-Reissner principle 

thus offers a rational justification of the reduced integration element, 

and provides a more general scheme for relieving the constraints that 
may occur in an assumed displacement finite element method. It is well 

known that a reduced integration scheme may lead to kinematic modes 

in the assumed displacement method. Thus precaution is also needed 

in implementing the mixed formulation to avoid the creation of kine- 

matic modes. 
The assumed stress hybrid model is also a very effective scheme for 

reducing the severe constraints that appear in the conventional assumed 

displacement finite element method. One illustrative example36 is the 
solution of problems of nearly incompressible materials. A plane strain 
problem consists of a square planform with the upper edge clamped, with 

one side edge restrained horizontally but free to slide vertically and the 

other side edge completely free. The lower edge is acted on by uniform 
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Table 1-Solutions for Displacement at the Unsupported Corner of a Square -Shaped 
Plane Strain Panel (óE/pa) X 106 

Displacement 
Hybrid Stress Key's Mixed Model Model 

Model Constant mean Bi-linear 
Element 7 Stress parameters stress interpolation 

Mesh 1 X 1 2X2,4x4 1X1 2X2 1x1 2X2 
Poisson's Ratio 

0.33 47.8 46.3 50.3 46.5 44.5 45.5 
0.40 44.5 43 48.5 43.3 37.5 41 
0.45 41 40 47 40 27.8 34.8 
0.48 38.3 37.8 45.8 37.5 15.9 26.5 
0.4999 36.3 36 45 35.8 0.12 0.47 

Asymptotic solution for incompressible material (óE/pa) = 36 X 10-6 

pressure p. The solutions are based on conventional matrix displacement 
method using three different four -node rectangular elements: (1) dis- 
placement element by assumed bilinear shape function, (2) element 
derived by the reduced form of Hellinger-Reissner principle of Key using 
constant mean stress, and (3) assumed stress hybrid element with seven 
stress parameters. Solutions for the vertical displacement at the un- 
supported corner were obtained for materials of different Poisson's ratio 
and by using different mesh sizes. The solutions by the assumed stress 
hybrid model using both 2 X 2 and 4 X 4 meshes are identical; hence they 
can be considered as the reference solutions. It can be seen from the 
solutions listed in Table 1 that the assumed displacement element has 
already become very rigid for v > 0.45, while both the elements by the 
mixed model of Key and by the assumed stress model can be used ef- 
fectively for nearly incompressible material up to e = 0.4999. Also, a plate 
element derived by the assumed stress hybrid model and by taking 
transverse shear into account has been shown to yield accurate results 
for plates and shells of a wide range of thickness -size ratios.40 

5. Fracture Analysis 

In fracture mechanics for brittle materials or for elastic plastic materials 
under small-scale yielding, the governing parameters are the elastic stress 
intensity factors K1, K11 and K111 which specify the intensities of stress 
singularity in the tearing mode, the inplane shear mode, and the out - 
of -plane shear mode, respectively. Although the assumed displacement 
finite element method can be modified to develop "crack" elements for 
which the stresses vary with 1/v , where r is the distance from the crack 
tip, a more versatile approach is the use of hybrid elements. 

There exists three basic finite element hybrid models for the devel- 
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Fig. 2-A "crack" element with embedded crack. 

opment of special singular elements for linear fracture mechanics.41 The 
three basic schemes for these models are as follows: 

(1) A scheme that is based on a complete series expansion of the 
stresses near the tip of the crack and on independently assumed 
boundary displacements to match the displacements of the neighboring 
element.42 Thus, the assumed stresses include the singular terms and 
are all equilibrating. They also satisfy the compatibility condition inside 
the element and the stress free condition along the crack surface. Such 
a model is based on the hybrid stress model, but it may also be inter- 
preted as a hybrid displacement model. Under this scheme, the crack 
surface is embedded in the element (Fig. 2); hence all the assumed stress 
parameters can be eliminated in the element level resulting directly in 

the stiffness matrix for the element. The magnitude of the singular terms 
are the stress intensity factors to be evaluated for the fracture analy- 
sis. 

(2) A scheme that is based on assumed equilibrating stress field and 
on independently assumed boundary displacements. Here, however, only 

the singular terms satisfy the compatibility condition, and the other 
terms may be ordinary polynomial expansion.43 In the finite element 
formulation several elements are needed around the crack tip (Fig. 3). 

Since the stress intensity factors are common to these elements, they 
cannot be eliminated in the element level. The stress intensity factors, 
however can he eliminated with a group of crack tip elements; hence the 
stiffness matrix of a super -element can be obtained. Such a model is a 

hybrid stress model. 
(3) A scheme that is based on assumed displacement field including 

the singular terms and on independently assumed boundary displace- 
ments and boundary traction.44 Such a model is a hybrid displacement 
model based on it a. For this model, again, several crack elements must 
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Fig. 3-Four "crack" elements at the crack tip to form a superelement. 

be used around the crack tip sharing the same stress intensity factors 
(Fig. 3). The hybrid displacement model contains three sets of field 
variables. It is however, more versatile in formulating crack elements 
with curved crack surfaces. 

A square panel with symmetric edge cracks under uniform tension 
(Fig. 4) has been analyzed by two-dimensional crack elements developed 
by all the three schemes discussed above. Because of the double sym- 
metry, only one quadrant of panel needs to be modelled. Thus for the 
last two schemes only two "crack" elements are needed to form a su- 
perelement at the crack tip. Table 2 compares the accuracy of the three 
"crack" elements. The errors were calculated based on an independent 
analytical solution obtained by Bowie,45 using the complex stress func- 
tion and a boundary collocation method. It is clear that the first scheme 
is superior while the results of the last two are comparable. Similar 
analyses with conventional assumed displacement elements would re- 

a 

Q 

Q 

Fig. 4-Square panel with symmetric edge cracks. 
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Table 2-Comparison of special "crack" elements by hybrid models 

Hybrid element 
scheme 

Number of elements 
in the finite 

element model 

Error 
in 

Total value 
dof of 
in K, 

model (%) 

1 

(Hybrid stress/ 
displacement model) 

2 
(Hybrid stress model) 

3 
(Hybrid displacement 

model) 

One 5 -node crack element and four 4 -node 17 0.1 
conventional elements 

Two 8 -node crack elements and 22 8 -node 184 0.5 
conventional elements 

Two 8 -node crack elements and 22 8 -node 184 1.0 
conventional elements 

quire about 1000 degrees of freedom to obtain comparable accuracy.4t 
Another advantage of these hybrid formulation is that the stress in- 
tensity factors can be evaluated directly when the nodal displacements 
of the "crack" element are known. 

For three-dimensional fracture analysis, however, the first scheme 
is no longer applicable, because the only available near -field solution 
is the two-dimensional asymptotic behavior, and the general series so- 
lution in three dimensions is not known. 

The second scheme has been applied to three-dimensional problems.46 
Here the crack front of the "crack" elements are assumed to be straight 
line segments and the stress intensity factors are assumed to he constant 
with each element. The implementation of the assumed displacement 
hybrid model is comparatively more flexibleand 3-D crack elements can 
be developed with curved crack front and with varying stress intensity 
factors within each element.47-49 Hybrid crack elements have also been 
extended to fracture analysis of anisotropic materials43,5° and for elastic 
plastic materials.49,5' 

6. Incremental Analysis for Nonlinear Problems 

Geometrically, nonlinear problems and elastic -plastic and creep prob- 
lems in structural mechanics are almost exclusively solved by incre- 
mental methods in finite element solutions. Such methods are often 
combined with iterative solutions. The nonlinear problems are, thus, 
reduced to piecewise linear problems and all the finite element models 
that have been discussed earlier can be extended to nonlinear solu- 
tions.52-54 One important feature of such incremental solution is that 
at the beginning of a loading or time increment the solution is, in general, 
not exact, hence it may not satisfy the stress equilibrium conditions and 
it may also violate the compatibility condition. Hofineister et aí.55 first 
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pointed out that by taking the initial equilibrium imbalance at the be- 
ginning of the increment into account in formulating the conventional 
assumed displacement finite element method by the principle of virtual 
work, the resulting matrix equation will be in the form of 

KAq=Oq+R, [5] 

where R represents equivalent nodal forces to be added to correct the 
initial stress imbalance. For many other finite element models, in ad- 
dition to the stress imbalance, there may also be compatibility mismatch 
at the beginning of the increment that can be corrected by appropriate 
equivalent nodal forces.54,58,57 In a recent work on the solution of rub- 
ber -like material by a mixed model it was found through a variational 
formulation that a correction term due to the violation of the condition 
of incompressibility also appears.58 It has been found that the inclusion 
of these correction terms is a very effective means to improve the effi- 
ciency of the interative-incremental solutions of nonlinear structural 
mechanics problems. 

7. Concluding Remarks 

Although the development of finite element methods has only a very 
short history of less than a quarter of a century, it already covers a very 
wide area. The present discussions, thus, have been limited to the vari- 
ational basis of finite element methods. The advances of finite element 
methods are obviously the results of the availability of the numerous 
variational principles in structural mechanics. Another way of looking 
at it is that the concept of finite element analysis has actually created 
many new variational principles in structural mechanics. The advantages 
of using the various finite element models over the conventional assumed 
displacement models have been identified. But it has also been pointed 
out that precautions should be used in their implementation. 
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Application of Finite Element Methods to the 
Analysis of Stresses in Television Picture Tubes 

R. E. Enstrom, R. S. Stepleman, and J. R. Appert 

RCA Laboratories, Princeton, N.J. 08540 

Abstract-The finite element method has been used to calculate the stress distribution and 
deformation behavior in a 25 -inch diagonal television bulb for various design 
parameter changes, tension -band variations, thermal gradients during processing, 
and missile impact simulation. In cases where experimental results could be 
compared with the calculated stress distributions, the agreement was excellent. 
The calculations show that in a television bulb the critical stress location is on 
the viewing surface at the top and bottom edges of the picture (screen edge at 
the end of the minor axis). The tensile stress at this location is reduced by 450 
psi as the amount of extra glass at the screen edge (wedge) Is increased from 
0 to 0.100 inch; is reduced by 75 psi as the centerface thickness is increased from 
0.485 to 0.500 inch; is reduced by 40 psi and increased by 90 psi for a bulge or 
a notch, respectively, at the interior screen edge; is increased by 10 psi for a spun 
(1/3 thinner) rather than a pressed funnel; is unchanged for a broader funnel than 
panel seal edge; is reduced by up to 235 psi by offsetting the panel from the funnel 
seal edge (but this increases the frit seal stress by a factor of 4 to 5 times); is re- 
duced by 150 psi for a tension band positioned near the face; is reduced by about 
300 psi for two overlayed tension bands; is increased to about 12,000 psi during 
UL missile impact testing of an unbanded (nonprotected) bulb; and is reduced to 
1200 psi compressive stress during heat up in the vacuum bake cycle. 

1. Introduction 

The finite element method is a powerful tool in the analysis of structures 
for static stress distributions, dynamic response, heat transfer, and fluid 
flow, and for interactions between these four parameters. In brief, finite 
element analysis is a means of subdividing a complex solid continuum 
into discrete blocks (finite elements) for which mathematical formulas 
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can be derived that describe their behavior. The aggregate structure is 

the sum of the properties of these individual blocks (elements) and their 

interactions. Each solid block can have 8 corners (or nodes) and each 

node can move in any of three directions (x, y, and z). Accordingly, for 

an assemblage of 300 elements used to describe a television picture tube, 

there might be on the order of 1600 simultaneous equations used to de- 

scribe the response of the tube to atmospheric pressure upon evacuation 

of the interior of the tube. The solution of this large number of equations 

requires matrix methods and the use of large scale digital computers. 
The power of the method is that it permits the a priori estimate of a 

stress distribution, frequency of vibration, etc., from a descriptive 
blueprint of the geometry of the structure and the elastic properties of 

the materials constituting the structure. In this way, many design 

changes can be made, and the effect of these design changes on the stress 

distribution can be evaluated before any metal ís cut for a mold or a large 

scale structure assembled. 
The basic equations used in the finite element method are given below. 

Here the forces and displacements are calculated for the element corners, 

called nodes. A force acting on a node causes a displacement. The set of 

force-displacement equations for one finite element having n -degrees 
of freedom is5 

Fl = k 12-12 +....+ + kln n 

Fi = ki1,1 + ki2.,2 + . . . . + kijj = kin,n 111 

Fn = ki1,l + kn2-52 + .... + k + knn fin. 

Here kif is an element stiffness coefficient and ,j is the displacement 
at the jth node. These nodal forces and displacements are summarized 

ín the element stiffness equation 

[F[ = [k 
[21 

which represents the array of linear algebraic equations given in Eq. [1]. 

Here, [k] is the element stiffness matrix (consisting of the material - 

dependent elastic stiffness matrix, the degree -of -freedom -to -strain 

transformation, and the stress -to -force transformation). IF) and 1..5) are 

the element force and displacement vectors, respectively. The nodal 

displacements are the unknowns. 
The matrices for the individual elements are next combined to form 

a complete set of equations for all the elements in the full structure 
(global) taking into account equilibrium, boundary, and continuity of 

nodal displacement conditions. This is given as the global stiffness 

equation, 
SP[ = 

[3] 
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where 1K] is the global stiffness coefficient matrix for all the elements, 
[P[ is the vector of global nodal forces (due to the summation of applied 
loads, atmospheric pressure, etc.) and 1_5[ is the vector of nodal point 
displacements, as before. The general solution to Eq. [3] is obtained by 
a sophisticated technique for solving systems of linear equations. 
However, we can think of this symbollically as obtaining the displace- 
ment by 

1[ = [K] -11P1. [4] 

The element stresses are obtained from the displacement by5 

[a`1= 151 

where WI is a vector giving the stress at specified points in the ith ele- 
ment, [Si] is the element stress matrix, and represents the dis- 
placements for the ith element...5 can consist of as many as three com- 
ponents, us, uy, and u2 expressed as a polynomial expansion in terms 
of the Cartesian coordinates, x, y, and z. 

ux = al + a2x 

uy = a3 + a4y [6] 

u2 = 05 + 062. 

For the particular isoparametric finite element used in the present 
calculations (see Sec. 2), the polynomials are6 

8 

ux = E hiuzi + h9ax 1 + h 1oax2 + h llax3 
i=1 

8 
uy = E h;uyi + h9ayi + hioay2 + hiiay3 

i=l 
8 

u2 = E hiu2i +h9az1 +h1oa22+h11az3. 
i= 1 

[7] 

Here ai is the displacement amplitude and is an additional degree of 
freedom. The coefficients represent the interpolation functions and are 
given by 

h1 =8(1+k)(1+n)(1+ h2=8(1-1)(1+n)(1+) 

h3=8(1 -1)(1-n)(1+}), h4=8(1+>;)(1-n)(1+) 

hs = 8 (1 + 1)(1 + n)(1 - 0, h6 = 8 (1 - 1)(1 + 0(1 - [g] 

h7=8(1-k)(1-n)(1-}), h8=8(1+k)(1-n)(1-) 
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h9=(1-0, h10=(1-n2), 
h11=(1-1-2). 

Here k, n, and are nondimensional local coordinates in the range -1 to 
+1. The first eight coefficients are the usual compatible interpolation 
functions. Coefficients 9, 10, and 11 are the incompatible interpolation 
functions that are related to linear shear and normal strains.6 These 
incompatible displacement modes are introduced in improved elements 
(i.e., isoparametric) to enhance the accuracy by permitting the element 
edges to bend, as compared to lower -order, constant -strain, compatible 
elements that cannot bend along the element edges, but can only 
translate. 

Compared with constant -strain elements, the isoparametric element 
shows a significant improvement in the accuracy of the finite element 
solution. For example, while a constant -strain element might result in 

a solution for displacement or bending stress of a cantilever within 30% 

of the exact solution values, the isoparametric element having incom- 
patible modes results in values virtually identical with the exact solu- 
tion.6 Further, in three dimensions, elements having incompatible dis- 
placement modes, which improve the element bending characteristics 
and solution accuracy, have been found to he excellent for the analysis 
of large structures such as dams and thick pipes.6 In fact, accurate 
solutions can be achieved using only a single element to describe the 
thickness, which significantly reduces the computer time required 
compared to that using multi -elements through the thickness. A single 
element is used for the thickness in the present kinescope finite element 
model. 

2. Experimental Procedure 

The ANSYS7 finite element computer program (Revision 2) in con- 
junction with a Control Data Corporation 7600 computer was used for 
all of the calculations reported here. The finite element model of the 25 

V 90° tube was developed from the blueprints of the standard panel and 
funnel shown in Figs. 1 and 2. A total of 267 isoparametric three-di- 
mensional elements (ANSYS STIF 45) were used to describe the tube 
structure. This element has eight nodal points, each having translational 
degrees of freedom in the x, y, and z directions. As shown in Fig. 1, the 
vacuum side of the viewing area is spherical and the outside is non - 
spherical. This geometry results in differing glass thickness in the three 
principal directions along the tube surface, i.e., the major, minor, and 
diagonal axes. The funnel has been modeled to represent a pressedglas_a. 
funnel having an approximate wall thickness of 0.25 inches or a spun - 
glass funnel having a wall thickness of about 0.170 inches. The frit seal 
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between the panel and the funnel was modeled as an element 0.010 
inches thick by 0.35 inches wide by about 1 inch long. 

The Cartesian coordinates for the element nodes were calculated from 
the radii of curvature specified for a 25 V 90° picture tube (Fig. 1) and 
these are: inside vacuum surface R = 40.7 inches; outside minor axis R 
= 44.794 inches; outside major axis R = 42.123 inches; and outside di- 
agonal axis R = 41.704 inches. The panel skirt and funnel node points 
were determined graphically from full-size blue prints. 

The materials properties are given in Table 1. With the input data for 
the materials properties, the element description, and the Cartesian 
coordinates for the nodal points, the ANSYS software program was used 
to generate the element surface stresses, element deflections, and 
graphical representations of the picture -tube deformation resulting from 
the action of atmospheric pressure on an evacuated tube. The surface 

9 OtLOCK 
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MINOR 

44.794 
INCHES 1137.77 
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INCHES 1059.28 

DIAGONAL 

3 O'CLOCK 

SECTION THROUGH 
SECTION THROUGH MAJOR AXIS 
MINOR AXIS 

;f*40.700 
RI (SEE TABLE dig 

%%%\%%%%%%%% 
. CI 

1.765 
44.83 MINOR AXIS 

SECTION 
THROUGH 
DIAGONAL 
AXIS 

Fig. 1-Top and side views of a standard 25 V 90° panel. Width of seal edge is 0.350 inches. 
Radii of curvature for inside and outside surfaces are shown. 
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Table 1-Materials Properties 

Young's Expansion 
Modulus Poisson's Coefficient Density 

(psi) Ratio (°C-1) (lb. Mass/in3) 

panel & funnel glass 10 X 106 0.223 98.5 x 10-7 3.03 X 10-3 
frit seal 7 X 106 0.29 97.5 x 10_7 7.24 x 10-3 

stress printout contains information on the two principal stresses and 
their directions. In the figures describing the stresses in the various parts 
of the picture tube, the algebraically largest value of the two principal 
stresses is reported. Thus, these figures show the largest compressive 
or tensile stresses for each element. 

2146.31 
R 

I 35"33'17' + 
26.104 

663.04 DIAGONAL AXIS 1: - 22.312 MAJOR AXIS 

I 

7 586.72 
MINOR AXIS 

18 190 
462.03 

Fig. 2-Top and side views of standard 25 V 90° funnel. 
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3. Results and Discussion 

The stress distribution was calculated for a standard 25 V 90° tube 
subjected to atmospheric pressure loading. In addition, the effect of other 
variables on the stress distribution was calculated. These variables in- 
cluded the effect of: 
1. varying amounts of glass thickness near the edge of the tube 
(wedge), 
2. altering the center face thickness, 
3. altering the blend radius, 
4. reducing the funnel thickness, 
5. using a broader funnel than panel seal edge, 
6. offsetting the panel and funnel seal edges, 
7. altering the tension band location, 
8. incorporating double tension bands, 
9. simulating the Underwriters' Laboratories missile impact test, 
10. incorporating thermal gradients (e.g., during tube processing). 
These areas are described in detail in the following sections. First, 
however, the stress distribution calculated for a standard tube is pre- 
sented. 

3.1 Standard 25 V 90° Tube Model 

The finite element model for a quarter section of the 25 V 90° panel is 
shown in Fig. 3. Only a quarter section is needed to describe the panel, 
since the panel is symmetrical about the major (horizontal) and the 
minor (vertical) axes as the viewer observes the panel in an operating 
set. The complete panel can be mathematically simulated by the inclu- 
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;FS- `I 
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Fig. 3-Finite element model of a one quarter section of a 25 V 90° panel (Run 59B), as 
viewed from the inside of the tube, showing the element geometry and size. 
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sion of boundary conditions along the minor and major axes respectively, 
as UY = 0 and UX = 0 (which specify no motion in the horizontal and 
vertical directions). The finite element grid shown in Figs. 3 and 4 is 

composed of elements of differing sizes. The reason for this is to have 
a large number of elements in high -stress -gradient locations, and a 
smaller number in regions where the stress changes only gradually. Such 
a procedure provides accurate stress calculations at all locations while 
minimizing the number of elements and, therefore, the computer 
time/cost of the analysis. 

Larger size elements are utilized towards the center of the panel, as 
shown in Fig. 4. The element size gradually decreases along both the 
minor and the major axes. At the screen edge, where the viewing surface 
and the skirt of the panel meet, the element size is about 0.25 inches wide, 
so that the stress can be accurately calculated in this high -stress -gradient 
region. The stress gradient along the minor axis will be illustrated in a 
subsequent figure. Fig. 3 also shows that the panel is a single element 
thick. It is only by the use of high order isoparametric elements (STIF 
45 in ANSYS) that accurate stress distributions can be achieved using 
a single element. Wilson, et al.,s have compared plate structures and have 

shown that results very close to exact solutions can be calculated using 
a relatively small number of isoparametric elements having incompatible 
modes. Doubling the number of simpler, constant -strain, elements does 
not result in comparable accuracy. 

It may also he noted in Figs. 3 and 4 that the element shape is close 
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Fig. 4-Top view of a finite element model of a one -quarter section of a 25 V 90° panel. 
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to rectangular even in the skirt -panel intersection region; this geometry 
will be shown more clearly in subsequent figures showing sections 
through the minor axis. To achieve the highest accuracy with these 8- 
noded solid elements, a well-proportioned aspect ratio should be used. 
The recently published work of Elst and Wielanger8 for a 26 V 110° color 
picture tube showed a similar type of element geometry, which they 
created independently from our work. Here too, rectangular solids were 
used in all locations, rather than wedge-shaped sections which might 
have been used near the screen edge and into the skirt. 

Side and end views of the finite element model of the panel and funnel 
quarter section are shown in Figs. 5 and 6, respectively. The element 
numbers are shown at the center of each element. The multiplicity of 
lines outlining the funnel and panel outer periphery results from viewing 
a curved surface from the side. 

In the initial model, the skirt of the panel incorporated three elements, 
as shown in Fig. 3. However, the one element that described the region 
between the mold match and the viewing surface, also indicated in Fig. 
3, became quite large near the end of the minor axis. Therefore to refine 
the model of the skirt in this region, the one large element was subdivided 
into three elements. These three elements, having a notation A, B, C, 
have principal stresses of 772, 796, and 859 psi tension, respectively, as 
shown in Fig. 7(a). The arithmetic average for these maximum stresses 
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MATCH 

rc 

Ce 
0 
Z 

imaidwo" 

Ir/7 
BOUNDARY CONDITION 

UZ 0 
AT BOTTOM EDGE OF 

FUNNEL 

1.875 INCHES 

II 1.075 INCHES 

¡Ill FRIT SEAL 0.0 INCHES ' 0.74 

1.87 

3.37 

5.24 

7.87 

Fig. 5-Side view of a finite element model of a one -quarter section of a 25 V 90° panel 
and funnel (Run 63C) as viewed parallel to the minor axis. 
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Fig. 6-End view of finite element model of a one -quarter section of a 25 V 90° panel and 
funnel as viewed parallel to the major axis (Run 63C). 

is 809 psi, which compares well with the principal stress of 825 deter- 
mined for the larger element. This shows that the subdivision better 
defined the gradient rather than altering it. Everywhere else the stresses 
are virtually the same in both models. 

Next, the lower inner nodes of elements A and B were moved outward 
by 0.075 and by 0.038 inches, respectively, to reduce the thickness. As 
shown in Fig. 7(b), the stress is reduced by 25 psi to 1275 psi tension at 
the screen edge. In elements A, B, and C, the stress is increased somewhat 
compared to Fig. 7(a). Elsewhere the stresses are virtually unchanged 
when the skirt model is made thinner (e.g., comparing Figs. 7(a) and 
(b)). 

Fig. 8 shows a comparison between the finite element model cross- 
section along the minor axis and an actual glass cross-section. Here a 
good correspondence is seen between the finite element model and the 
glass structure. Accordingly, we believe that the stresses shown in Fig. 
7(b) represent a good approximation to the stress distribution in an ac- 
tual panel. Because the inside of the panel model does not have a fillet, 
the calculated stress at the screen edge may he 100 psi higher than for 
an actual panel having a fillet present. 

In Fig. 9, the calculated stress versus distance along the major and 
minor axes is shown for the atmospheric surface for Run 63C (center face 
thickness is 0.500 inches). Also plotted are the actual strain -gage -mea- 
sured stress values,9 and these are seen to be in excellent agreement with 
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Fig. 7-(a) Cross-section through minor axis of color -tube model having straight inside edges 
for elements A, B, and C. Negative stresses are compressive and positive stresses 
are tensile. (b) Cross section through minor axis of color -tube model having a 

thinner skirt at elements A, B, and C (Deck 63C). Negative stresses are com- 
pressive and positive stresses are tensile. 
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Fig. 8-Comparison of finite element model cross section (Deck 63C) through minor axis 
with cross section of actual 25 V 90° glass. The finite element nodes are shown 
and numbered. 
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the calculated curve. The rapid increase in stress near the screen edge 
requires that the strain gages be very accurately and reproducibly po- 
sitioned. A difference in placement of 1/8 to 1/4 inch can significantly in- 
crease or decrease the observed stress (near the screen edge, 1/4 inch 
corresponds to a stress difference of 200 psi). 

Both curves in Fig. 9 show the transition from compressive stresses 
in the center of the panel to tensile stresses toward the edge of the panel. 
Along the minor axis this occurs at about 6 inches from the face center, 
while along the major axis the transition occurs about 9 inches from the 
center of the tube face. A similar type transition occurs for a beam fixed 
at both ends having an atmospheric pressure load.10 In both cases, 
compressive forces are noted near the center portion while tensile stress 
is present on the top surface near the support point (a wall in the case 
of the beam and the skirt in the case of the television panel). The more 
complex panel structure has a stronger dependence of stress on distance 
than does a simple beam. Comparison of the stress distribution in the 
two limiting text -book cases of simply supported platesll with plates 
having built-in ends12 shows that a television panel on a funnel is an 
in-between condition and, therefore, difficult to calculate using standard 
text -book type equations. Accordingly, the finite element approach to 
the calculation of the stress distribution is preferred, because it is not 
limited to specific boundary conditions. Rather the boundary conditions 
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Fig. 9-Comparison of calculated stress with experimentally determined stress along the 

major and minor axes. 
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imposed by the geometry and materials properties, as in the real struc- 
ture, are the ones that are operative. 

The ANSYS calculated stresses and experimentally determined values 
are compared in Fig. 10. Here it may be seen that tensile stresses are 
present in the panel skirt, the frit seal, and the adjacent region of the 
funnel. The lower portion of the funnel exhibits only compressive 
stresses. The frit seal is important because it joins the panel and the 
funnel parts together to form the complete bulb. It is important that 
stresses be kept low in this region, since the frit material after firing is 
not as strong as the parent glass. In later sections the effect of offset 
between the panel and funnel mating surfaces on the frit seal stresses 
will be discussed. 

The stresses present over the viewing area (in quarter symmetry), 
resulting from the atmospheric pressure acting on the evacuated bulb, 
are shown in Fig. 11 for the outside surface and in Fig. 12 for the vacuum 
side. The stresses shown for the minor axis cross-section in Fig. 7(b) are 
the same as along the minor axis in Figs. 11 and 12. The high -stress region 
along the screen edge extends from the minor axis to the corner to the 
major axis. This high -stress region in a tube is a very critical location and 
may be a cause of failure of the tube. Accordingly, it is particularly im- 
portant that this region not be subject to extraordinarily high stresses 
resulting from the glass fabrication or mounting the tube in the cabinet. 
While glass is strong in compression, it is very weak in tension. Further 
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Fig. 11-Stresses present on the atmospheric side of the viewing surface resulting from 
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Negative stress are compressive and positive stresses are tensile. 
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Fig. 12-Stresses present on the vacuum side of the viewing surface resulting from atmo- 
spheric pressure (Deck 63C). Negative stresses are compressive and positive 
stresses are tensile. 
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Fig. 13-Stresses present on the atmospheric side of the skirt and funnel as viewed parallel 
to the minor axis (63C). 

it is subject to failure by a stress corrosion mechanism whereby water 
vapor in the air reacts with the glass at high tensile stress locations to 
cause premature failure. This failure mechanism is time dependent, so 
that the actual failure can occur some time after a surface defect has been 
initiated. Later sections discuss in more detail the effect of geometric 
changes in the glass thickness near the screen edge on the tensile stress 
in this location. The stresses at the screen edge on the vacuum side are 
all compressive and thus of no concern even though the magnitude of 
the stress can range up to nearly 1600 psi, as seen in Fig. 12. 

The stress distribution on the skirt and funnel is shown for the at- 
mospheric surface in Figs. 13 and 14 when viewed parallel to the minor 
and major axes, respectively. In Fig. 13, the tensile stresses in the skirt 
are seen to decrease as one proceeds in the direction of the tube corner 
from the end of the minor axis. Similarly, in Fig. 14, these tensile stresses 
are highest at the major axis and decrease towards the tube corner. In 
the funnel, the stresses are mainly compressive and therefore of not too 
much consequence, except near the frit seal. It should he pointed out that 
Figs. 13 and 14 refer to a pressed funnel. In a later section, results will 
be presented for the stress distribution in a thinner, spun -type funnel. 
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Fig. 14-Stresses present on the atmospheric side of the skirt and funnel as viewed parallel 
to the major axis (63C). 

The stresses on the vacuum surface for the tube are shown in Figs. 15 

and 16. Here, the stresses are virtually all compressive on both the skirt 
and funnel surfaces. These figures illustrate another advantage of the 
finite element analysis, i.e., that stresses can be calculated for regions, 
such as the inside of the tube, that are difficult to measure with strain 
gages. 

In addition to stress distributions, the displacement of the structure 
under the action of the atmospheric pressure load can be calculated. In 
Fig. 17 the displacement calculated for atmospheric pressure acting on 
an evacuated bulb is illustrated. Here the center of the tube is calculated 
to move inward by 0.007 inches. The inward movement of the face in turn 
counteracts the atmospheric pressure acting on the skirt, with the result 
that a net outward movement of the skirt is observed. Below the frit-seal 
region, the action of the atmospheric pressure causes a new inward 
movement of the funnel, leading to a general compressive state of stress 
in this region. It should be pointed out here that the deformation and 
stresses shown in the previous series of figures represent the response 
of the tube only to atmospheric pressure. The effects of implosion pro- 
tection bands on the response of the tubes will be illustrated later. 
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Fig. 15-Stresses present on the vacuum side of the skirt and funnel as viewed parallel to 
the minor axis (63C). 

3.2 Effect of Wedge on Stresses 

In the previous section, the wedge at the screen edge was determined by 
the difference of the inside and outside radii of curvature of the tube face. 
To try to help understand the effect of wedge (the difference in thickness 
at the screen edge compared to the thickness at the center of the tube 
face) at the minor and major axis screen edges, a standard 25 V 90° finite 
element model was modified to have 0, 0.050 and 0.100 inches of addi- 
tional glass thickness at the screen edge. This was accomplished by 
keeping the inside of the viewing surface fixed at a radius of 40.7 inches 
while using three different spherical radii of curvature for the outer 
surface, as given in Table 2. 

Since the outside surface was treated as spherically symmetric, there 
will be greater wedge at the ends of the major and diagonal axes than is 
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Table 2-Dimensions for 25V 90° Panels Having Various Amounts of Wedge 

Computer 
Run 

Inside Radius 
of Curvature 

(inches) 

Outside Radius 
of Curvature 

(inches) 

Wedge at Minor Axis 
Screen Edge* 

(inches) 

61B 40.7 40.7 0.0 
61D 40.7 43.792 0.050 
61E 40.7 47.37 0.100 
59C 40.7 44.794 Minor 0.065 

42.123 Major 0.044 
41.704 Diagonal 

* 7.57 inches from face center 

shown for the minor axis. For comparison, the radii of curvature for the 
present 25 V 90° panel are given in Table 2; here the outside surface is 
not spherical, which produces less wedge at the end of the major axis 
where the stress is lower than at the end of the minor axis. In a second 
type of industry -standard panel, the inside surface is pressed to a non - 
spherical shape and the outside viewing surface is polished to a spherical 
curvature. The thickness at the center of the viewing surface for the 
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Fig. 16-Stresses present on the vacuum side of the skirt and funnel as viewed parallel to 
the major axis (63C). 
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Table 3-Results of ANSYS Computer Calculations for Stress at the Minor Axis Screen 
Edge 

Thickness 
at Screen Reduction Stress in 

Computer Wedge Edge Stress of Stress Fr it Seal 
Run (inches) (inches) (psi) (psi) (psi) 

61B 0.0 0.485 1610 0 734 
61 D 0.050 0.539 1360 250 770 
61 E 0.100 0.593 1168 442 793 
59C 0.065 0.555 1379 775 

above models was taken as 0.485 inches; for the previously shown results 
on Run 63C the panel thickness is 0.500 inches at face center. 

The results of the ANSYS calculations are given in Table 3 for the 
critical area at the minor axis screen edge. More detailed data are pre- 
sented in Fig. 18(a)-(c), which shows the stresses existing on both the 
vacuum side and atmospheric surface along the minor axis for tubes 
having 0.0, 0.050, and 0.100 inches of wedge, respectively. Comparison 
of the data in the figure suggests that differing amounts of wedge affect 
principally the tensile stresses at the screen edge. At this location, the 
stress decreases from 1610 to 1360 and then to 1168 psi as the wedge is 
increased from 0.0 to 0.050 and then to 0.100 inches, respectively. The 
dependence of the decrease in stress with increasing wedge is shown in 
Fig. 19. Here, the tensile stress at the screen edge is seen to decrease 
nearly linearly with increasing wedge. Accordingly, if strain gage mea - 

Fig. 17-Section of the color tube model through the minor axis showing the displacement 
calculated for atmospheric pressure acting on an evacuated bulb. The dotted line 
indicates the original undeformed structure. The maximum deformation at the 
center is 0.007 inches. 
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Fig. 18-Cross-section of a 25 V 90° tube (a) having a 0.485 Inch center face thickness 
and no wedge at the minor axis screen edge (61B), (b) having a 0.485 inch center 
face thickness and 0.050 inches of wedge at the minor axis screen edge (61D), 

and (c) having a 0.485 Inch center face thickness and 0.100 inches of wedge at 
the minor axis screen edge (61E). 

surements showed higher than desired stress at the screen edge on a 
particular batch of tubes, the stress could be reduced significantly by 
building in additional wedge during the glass forming operation, or by 
removing less glass during the face polishing operation. 

Finally, it should be noted that decreasing the stress at the screen edge 
by increasing the wedge makes the panel surface stiffer. This greater 
stiffness then tends to increase the stress in the skirt and in the frit seal. 

However, the increase in stress in the frit-seal region from 734 to 793 psi 

as the wedge increases from 0.0 to 0.1 inches is fortunately much less than 
the reduction in stress at the screen edge (440 psi). 

3.3 Effect of Center Face Thickness on Stress 

The results described above were calculations for panels having a cen- 
terface thickness of 0.485 inches. This value represents the design 
standard thickness. Indeed, a preferable panel thickness may be 0.500 
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Fig. 19-Reduction in tensile stress at the minor axis screen edge as a function of wedge 
for a 25 V 90° panel on a pressed funnel. Both the atmospheric and vacuum 
viewing surfaces of the panel are spherically symmetric. 
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Fig. 20-Minor axis cross-section showing stresses present in tubes having (a) 0.485 inch 
and (b) 0.500 inch center face thicknesses (59HH). 
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Table 4-Comparison of Stresses at the Minor Axis Screen Edge for 0.485 and 0.500 Inch 
Centerface Panels 

Centerface Increased Reduction 
Computer Thickness Stress Thickness in Stress 

Run (inches) (psi) (inches) (psi) 

59C 0.485 1379 0 0 
59HH 0.500 1304 0.015 75 

inches. To make the comparison for the effect of center face thickness, 
the same finite element model was used and only the coordinates for the 
outer surface were changed. The same internal and external radii of 
curvature were used. The calculated stresses for the 0.485- and 0.500 -inch 
thick panels are shown in Fig. 20. Here, the stress at the minor axis screen 
edge is reduced to 1304 psi (0.500 inches) from the value of 1379 psi ob- 
served for the 0.485 inch panel. Stresses at other locations on the face 
are also reduced, but by an increasingly smaller amount proceeding 
toward the center. The stresses in the funnel and skirt are virtually un- 
changed as the panel thickness increases (by .015 inches uniformly), in 
contrast to the greater skirt stresses observed in Figs. 18(a)-(c) when 
the wedge was increased. These results are summarized in Table 4. 
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Fig. 21-Minor axis cross -sections showing stresses present in 0.500 Inch center face 
thickness tubes having (a) a bulge or (b) a notch at the screen edge. 
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Table 5-Comparison of Stresses at the Minor Axis Screen Edge for Panels Having Local 
Increased or Decreased Thickness at this Location. Both Panels have a 0.500 
Inch Centerface Thickness 

Screen Edge Change in Change in 
Computer Thickness Stress Thickness Stress 

Run (inches) (psi) (inches) (psi) 

62CH 0.520 1390 -0.050 +86 
59HH 0.570 1304 0 0 
62DH 0.620 1266 +0.050 -38 

3.4 Effect of Blend Radius Geometry on Stress 

The thickness of glass at the screen edge was varied to determine the 
effect on the stress of a localized notch or bulge at the transition region 
between the panel face and the panel skirt. This was done by decreasing 
(Run 62CH) or increasing (62DH) the Z -component of the Cartesian 
coordinates of all elements at the screen edge by 0.050 inches. The effects 
of these changes are shown in Fig. 21 and Table 5. The presence of a 
notch is seen to increase the stress to 1390 psi, while having additional 
glass at the transition region reduces the stress to 1266 psi. Calculations 
for the standard -design are also shown in Table 5. 

In Table 5, it may be seen that the effect of having a decreased glass 
thickness at the screen edge increases the tensile stress by 86 psi. By 
comparison, increasing the thickness by 0.050 inches reduces the stress 
by only 38 psi. These results therefore emphasize the deleterious effects 
on the stress of having a notch in the region of the screen edge, compared 
to the smoother transition region of the standard panel design shown 
in Fig. 20. 

3.5 Effect of a Reduced Funnel Thickness on Stress 

A spun funnel is only about two thirds as thick as a pressed funnel. To 
determine the effect of a thinner funnel on the stress distribution, the 
previously -used pressed funnel model was reduced in thickness by 1/,3. 

The same standard panel was used as on the pressed funnel (Run 63C) 
described in the initial series of figures. The stress distribution for this 
bulb is shown in Fig. 22. Comparison with Fig. 7(b) shows that the stress 
at the screen edge is increased slightly to 1282 psi, compared to 1275 psi 
for the pressed funnel having the same panel. The stresses in the frit seal 
are increased to 910 psi, compared to 761 psi for the pressed funnel. The 
stresses in the thinner funnel are about 200 psi higher than in the pressed 
funnel. 

The calculated stress distribution in the panel is compared with the 
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Fig. 22-Minor axis cross-section showing the stresses present in a standard panel on a 

thinner, spun -type funnel. 

Table 6-Comparison of Calculated and Observed Principal Stresses in a Bulb having 
a thinner, spun -type funnel. 

Location 
on 

Panel 

Calculated 
Stress 1 

(psi) 
Stress 2 

(psi) 
Distance 
(Inches) 

Stress 1 

(psi) 

Observed 
Stress 2 

(psi) 
Distance 
(Inches) 

I Face Center -470 282 0 -478 319 0 
(Vacuum Side) 

2 Minor Axis -380 301 2.3 -332 352 2.6 
3 Major Axis -378 279 2.3 -280 201 2.6 

4 Major Axis 336 -15 388 89 6.8 
5 Diagonal Axis 623 -272 6.4 687 -170 6.8 
6 Major Axis 529 906 Screen Edge 638 912 Screen Edge 
7 Major Axis 209 -1429 Inside -59 -1212 Inside Seal 

Frit Seal Edge 
8 Diagonal Axis 379 -103 Corner 408 -50 Corner 
9 Minor Axis 1282 764 Screen Edge 1158 909 Screen Edge 

10 Minor axis -1384 -262 Inside -1444 -26 Inside Seal 
Frit Seal Edge 

Corner 

10 

S 

9 

Minor Axis 

2 

Face Center 

7 6 4 3 1 

Major Axis 
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experimentally measured stress distribution in Table 6. In this Table, 
both principal stresses at each location have been included to indicate 
the degree of agreement. As can be seen, the values for the ANSYS cal- 
culated stresses and the strain -gage -measured stresses are in excellent 
agreement. This agreement further corroborates the accuracy and use- 
fulness of the finite element method when a good model and a high order 
isoparametric element are used. 

3.6 Effect of a Broad Seal Edge on Stress 

In older -design funnels, the seal edge of the funnel was made deliberately 
wider than the panel seal edge to allow for manufacturing variability. 
In this way, the panel seal edge would always continuously contact the 
funnel seal edge even though the difference in interior dimensions may 
be 0.050 inches or more. The effect of one-sided seal -edge offset is con- 
sidered in a later section. 

The case of a wider -funnel seal edge was modeled by making the funnel 
0.45 inches wide at the seal edge and tapering into the standard 
pressed -funnel model dimensions about 3 inches below the seal edge. 
The width of the panel seal edge is 0.35 inches. The frit seal material 
joined the panel and the funnel as shown in the inset to Fig. 23. Com- 
parison of Fig. 23 with the standard bulb in Fig. 7(b) shows that the 
presence of the wider funnel seal edge does not appreciably alter the 
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Fig. 23-Minor axis cross-section for a bulb having a 0.45 inch funnel and 0.35 inch panel 
seal edge. The centerface thickness is 0.500 inches. The inset shows the geometry 
of the seal edge. 
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stress distribution (by more than 25 psi) except in the region of the frit 
seal. The stresses are reduced in the frit seal and in the thickened region 

of the funnel presumably because of the larger cross-sectional area. 
Thus, the principal advantage of the wider -funnel seal edge is the 

greater dimensional freedom it allows while assuring complete contact 
of the funnel and panel seal edges. In this way, manufacturability should 
be increased. Of course, the penalty is slightly increased weight of the 
funnel. 

3.7 Effect of Offset Seal Edges on Stress 

The effect of offsetting equally -wide (both are 0.35 inches) panel and 
funnel seal edges by 0.060 inches, is illustrated in Fig. 24. Here the stress 
in the frit seal increases to tensile values of 4216 psi for the funnel offset 
outward from the panel and to 3301 psi for the funnel offset inward from 
the panel edge. Needless to say, the magnitude is sufficiently high to be 

of concern. These high stresses could cause fracture of the weaker frit- 
seal material. Indeed, the frit seal has been observed to fail during the 
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Fig. 24-Minor axis cross -sections of bulbs having a funnel that is displaced (a) outward 
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exhaust bake cycle (the bulb is first evacuated here) in some mis- 
matched -seal -edge bulbs, confirming the high stresses calculated for the 
frit seal. Accordingly, it is of great importance that the seal edges be well 
matched to avoid failures during processing or at some later date. 

As may be seen upon comparing the stress distributions for (a) and 
(b) in Fig. 24, the effect of a 0.060 inch inward or outward displacement 
of the funnel relative to the panel also changes the stresses at the screen 
edge. For comparison, a bulb having matched seal edges is shown in Fig. 
24(c). Here the stress is 1379 psi at the screen edge and 775 psi at the frit 
seal. Thus, the outward displacement of the funnel reduces the screen - 
edge stress by 235 psi and the inward displacement reduces the stress 
by 160 psi. This reduction in stress comes about presumably because the 
funnel through the frit does not exert as great a downward and lateral 
restraint to the panel skirt as when the seal edges are matched. While 
the reduction in screen -edge stress is a desirable objective, achieving it 
by offsetting the seal edges is not an acceptable means, since the frit-seal 
stress is increased by a factor of 4 to 5 times compared to the matched 
case. 

3.8 Effect of Tension Band Location oh Stress 

In one form of integral implosion protection, a steel tension band is 
placed around the skirt of the bulb after evacuation and final processing. 
Between this tension band and the glass is a steel rim band. During ap- 
plication of the tension band, it is pulled to about 1200 pounds force and 
then mechanically clamped together. The tension band is 5/8 inches wide, 
0.025 inches thick, made from high tensile strength steel, and is quite 
stiff. Accordingly, it does not apply a uniform force to the skirt periphery, 
but rather concentrates the inward -directed force at the corners. 
Therefore the action of the tension band was modeled by applying all 
of the force over three elements at the rounded portion of the panel 
corner. Axially, the location of the band can he adjusted from near the 
frit seal to near the viewing surface. 

The effect of tension band placement on the calculated stress distri- 
bution is shown in Fig. 25. The inset on the right in the figure indicates 
the band position on the panel corner; near the face for band position 
between 3 and 2, and near the frit seal for band position between 2 and 
1. The stresses for a band position near the face, Fig. 25(a) are generally 
lower than for a band positioned near the frit seal, Fig. 25(b). In partic- 
ular, at the screen edge the stress is about 150 psi lower for the band 
placed near the face. This reduction in stress at the screen edge thereby 
provides an additional margin of safety against failure at the screen edge. 
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Fig. 25-Minor axis cross -sections of bulbs having (a) tension band between the face and 
the mold match, i.e., between 3 and 2 on the inset, and (b) tension band between 
the frit seal and the mold match, i.e., between 1 and 2 on the inset. 

The stresses for a comparable unbanded tube were presented in Fig. 
24(c). The screen -edge stress for the tube having the band near the frit 
seal is nearly identical to the unbanded tube. Accordingly, bands placed 
near the face appear to be preferable. Comparison with the unbanded 
tube also shows that banding reduces the stresses in the skirt, frit seal, 
and funnel by 200-300 psi, which is also desirable. But, stresses in the 
skirt and frit seal at the corner can be higher. 

Finally, comparison of the displacement at the face center shows that 
the face moves inward about 0.002 inches less for the banded tube than 
for the unbanded one. This calculated difference agrees very well with 
values observed for actual tubes.9 

3.9 Effect of Double Tension Bands on Stress 

Another form of internal implosion protection utilizes two overlayed 
tension bands while omitting the rim band. In this version the bands are 
applied forward of the panel mold match near the viewing surface. Each 
hand is tensioned to 1350 ± 150 pounds force. The cumulative effect of 
both bands is estimated to be 2250 pounds force (two times 1350 less 
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relaxation after the bands are clamped). Differences have been found 
between the implosion characteristics bf bulbs having pressed versus 
the thinner spun funnels protected with double tension bands. In the 
Underwriters' Laboratory test, the thicker pressed funnel bulb has a 
satisfactory glass throw for a deliberately induced implosion, while the 
spun funnel bulb, as it presently is protected, does not meet the glass 
throw criteria. Accordingly, both a pressed and a spun -type funnel were 
modeled and compared to determine if the static stress distributions are 
different and whether this difference might explain the dynamic dif- 
ferences. 

The static stress distributions calculated for the pressed and for the 
spun -type funnel are shown in Fig. 26 (A) and (B), respectively. These 
results may be compared with the nonbanded bulb in Fig. 7(c). Here we 
see that the stress at the screen edge is reduced by about 300 psi in both 
cases to about 960 psi. This effect is very beneficial in that by reducing 
the stress at the screen edge, it minimizes the deleterious effects of 
water -vapor -related stress corrosion on the safety of the tube. 

The difference in the tensile stress distribution between the pressed 
and the spun funnels is about 30 psi on the face, a relatively small value, 

71 

66 6 
450 

-177 
959 

413 I595 -476 -754 -948 -1037 

\-894 \-366-464 -552 -599 
-1186 -473 

-689 

336! -664 
3-236`-755 36 

-517-420 463 4-798 
559 -928 

-803\-507 3261 -742 

-599 -699 
488 

- 369 -578 -669 ` 
(A) ` 

-505 \.'-804 
(B) 

Fig. 26-Minor axis cross -sections for double tension bands on (A) pressed funnel and (B) 
spun, thinner tunnel. 

9$0 -461 -748 -948 -1041 
427 1617-152 

-495 

750 
6508 

518 

®" -453 -544 -593 
-1213 

C -763 

-1033 -782 

- 689 

RCA Review Vol. 39 December 1978 693 



and about 200 psi in the frit seal region. In spite of the higher tensile 
stresses in the spun -type funnel, the frit seal, funnel, and skirt are not 

unduly stressed. Accordingly, since it appears that the static stress dis- 

tribution is the same in both funnel types, differences noted in glass 

throw must be related to the dynamic behavior of the glass from the spun 

and pressed funnel bulbs. 

3.10 Effect of Impact of the UL Missile on Stresses 

In the Underwriters' test for glass throw upon implosion, a missile im- 
pacts the face of the screen with 15 foot-pounds of energy. To determine 
the effect of this impact on the stress distribution prior to rupture of the 
glass, the dynamic impact was approximated by a 7000 pound static 
force.13 To determine the effect of impact on the glass itself, the bulb 
did not have an implosion protection band, as would ordinarily be 
present on a commercial tube. 

The results of this calculation are shown in Fig. 27. Very high tensile 
stresses are shown to be present on the vacuum side of the tube near the 
point of impact (20,719 psi), along the atmospheric surface screen edge 
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pounds. The inset shows the position of high tensile stresses on the tube face. 
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(up to 12,400 psi), and on the atmospheric surface of the skirt and frit 
seal region (up to 11,000 psi).* Thus, the calculation shows that several 
other high stress areas exist in addition to the point of impact. In turn, 
fracture during implosion testing is observed to occur at several locations, 
such as the screen edge, although the main fracture initially is the point 
of impact. At times, failure occurs in the funnel. The high tensile stresses 
generated by the impact cause a crack to be formed and this crack readily 
propagates in the tensile stress region. The atmospheric pressure opens 
up the crack, and complete failure then occurs. 

The elastic deformation at the point of impact is about 0.075 inches 
as shown on the inset to Fig. 27. Simultaneously the frit-seal region 
moves outward 0.025 inches at the end of the minor axis and 0.015 inches 
at the end of the major axis. The deformation at the several locations 
is indicated by the difference between the original contour without at- 
mospheric force or impact force, shown as a dotted line, and that for the 
deformed structure responding to the atmospheric and 7000 -pound - 
impact force. 

The exact correspondence of a 15 foot-pound impact and its static - 
force equivalent depends on a number of factors that are not unambig- 
uous. Thus while one calculation gives 7000 pounds,13 other calculations 
indicate that the force may be as high as 23,000 pounds.14 In the latter 
case, the tensile stress around the point of impact would be very much 
higher than 20,000 psi and could be as high as 70,000 psi. It should be 
pointed out that the stresses indicated in Fig. 27 are not directly under 
the point of impact, but are the average value at a distance of about 3/4 
inch. Stresses at the point of impact would be much higher than the 
20,000 or 70,000 psi discussed here. The present calculations are not 
intended to determine the highest stress at the point of impact, but 
rather to determine the location of high stress points all over the tube. 
To determine the value of the stress at the point of impact, a much 
smaller element size, perhaps as small as 0.050 inches on a side, should 
be used to resolve the stress in this high gradient region. Such a model 
has been used for the analysis of stresses in silicon wafers loaded with 
a point load at the center.15 

A further refinement of the finite element calculation would be to 
determine the stress distribution when an implosion protection band 
is present. In this case, though, a simple approximation of the resultant 
force from the band acting on the diagonal axis corner could not be used, 
since the frit-seal region and skirt moves outward very significantly. 
Rather, a finite element model of the band, its position, and its applied 

Another calculation using stilt boundary conditions UX = UY = UZ = 0 to isolate the quarter symmetry section gives similarly high stresses at these locations. 
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load would have to be developed. The loaded tension band then would 

interact with the UL impact -simulating load on the face to restrict skirt 
and face movement. In this way the tensile stress region in the glass 

would be reduced, and glass fracture would not be be so catastrophic. 

3.11 Effect of Thermal Gradients on the Stress Distribution 

In the sections treated so far, the action of atmospheric pressure, band 
forces, and impact forces on tubes having various geometries has been 
examined. In this section we consider the effect of thermal gradients, 
such as might be developed during a high -temperature bake of the tube 
while it is being simultaneously evacuated. For these calculations, ex- 

perimental values of the temperatures existing on the atmospheric and 
vacuum surfaces at about 50 locations16 during the exhaust bake cycle 
were interpolated using a Lagrangian routine on a Hewlett-Packard 97 

calculator for each of the 530 node points. The temperature at the center 
of the face was 350°C on the atmospheric side and about 312°C on the 
vacuum side. The gradient on both sides going towards the minor axis 
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spheric pressure. The thermocouple temperatures are circled. High tensile 

stresses exist along the inside surface of the tube for a higher outside than inside 

temperature distribution. 
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screen edge was about 7°C. The temperature differential between the 
inside and outside surfaces was about 44°C at the minor axis mold match, 
30°C at the frit seal, and 6 to 20°C in the funnel. 

The stress distributions resulting from the thermal gradient alone and 
in conjunction with the atmospheric pressure load are shown in Fig. 28. 
The temperature distribution as measured by thermocouples is shown 
by circled values. Here, a gradient of about 40°C exists between the 
outside and inside faces through the 0.485 -inch -thick panel glass. 
Through the thinner sections of the funnel, the thermal gradient is much 
less. The tensile stresses on the vacuum side resulting from the thermal 
gradient are very high and range up to 2600 psi on the face and skirt and 
up to 2900 psi at the frit seal. The simultaneous application of atmo- 
spheric pressure reduces the tensile stresses in the frit seal by about 1200 
psi (2922-1744 psi), which is good because the frit material can be weaker 
than the parent glass body. 

In both (a) and (b) of Fig. 28, the entire outside surface including the 
screen edge is in compression. The outside surface is in compression 
principally because the outer surface is hotter and tries to expand. In 
so doing it puts the inside surface in tension. Fortunately, this high 
tensile stress is on the inside of the tube, removed from water vapor ef- 
fects that can cause failure at lower stress levels by stress corrosion ef- 
fects. 
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Finite Element Analysis of a Twenty -Five Megawatt 
Power Tube and a High -Energy Water -Cooled Heat 
Sink for Fusion Research* 

R. C. Bauder 

RCA Solid State Division, Lancaster, Pa. 17604 

Abstract-In this paper, the finite element method is used to calculate the thermal stress 
behavior of structures with up to 30 kW/cm2 of surface energy bombardment. 
Analysis of structures by this method in the early design stage can be done at 

relatively low cost and offers a reduction in design and development times. Further, 
the method permits the analysis of structures with nonlinear properties, such as 
temperature -dependent thermal conductivity or radiation -induced swelling. In the 

paper, the method is applied (1) to a power tube anode capable of dissipating two 
megawatts of power and (2) to a beam dump for use in a Tokamac Fusion Test 
Reactor with a power density of thirty kW/cm2. 

I. Introduction 

A twenty -five -megawatt power tube and an eight -megawatt beam dump, 
or heatsink, to be used in the Tokamak Fusion Test Reactor (TFTR), 
now under construction at the Princeton Plasma Physics Laboratory 
at Princeton, N.J., were designed with the aid of finite element analysis. 
This method of analysis is very useful in the solution of the transient and 
steady-state thermal and thermal -stress problems that arise in the 
handling of large energy densities, especially since any nonlinear material 
properties or convection coefficients involved can be expressed quite 
easily as a function of temperature or heat flow across a boundary. 

This work was supported in part by the University of California, Lawrence Livermore Laboratory, under 
Purchase Order No. 2660502, the Princeton Plasma Physics Laboratory under Contract Ef 11-1)-3073/269, 
and the RCA Corporation. 
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Fig. 1-Neutral-beam-injection system and it's relation to the Tokamak Torus. 

The Tokamak Reactor, shown schematically in Fig. 1, is to be used 
in nuclear fusion experiments. Nuclear fusion, a reaction that makes use 
of a high -density isotope of hydrogen, is theoretically capable of gener- 
ating an inexhaustible supply of energy. However, in order for a useful 
reaction to take place, the hydrogen (tritium) plasma must be ignited 
and maintained at a very high temperature (approximately 100 million 
°K) for several seconds. Present research schemes make use of a neutral 
beam of deuterium as the source of ignition. 

The high -voltage grid of the power tube, the anode of which is water 
cooled, can accommodate two megawatts of plate dissipation while 
switching twenty-five megawatts. This tube switches the deuterium 
beam, which is initially in the ionized state. The ionized deuterium beam 
is then stripped of its charge in a neutralizer, which is approximately 4O9ó 

effective. The stripped ions .are used to ignite the plasma and the re- 
maining ions are deflected to the water-cooled beam dump by means of 
a deflection magnet, as shown in Fig. 1. This beam dump, or heatsink, 
must be capable of absorbing 30 kW/cm2 for a total of eight -megawatts 
in each of three sections (three neutral beams are necessary to ignite the 
plasma). The same beam -dump design is also employed in a retractable 
calorimeter used to measure the energy of the neutralized portion of the 
beam. 

The switching power -tube anode must be capable of absorbing the 
normal 14 kW/cm2 of electron -beam power, and the beam dumps must 
he capable of absorbing 20 to 30 kW/cm2 of neutralized or ionized deu- 
terium beam power. In both cases, the collecting surfaces have been set 
at an angle to reduce the incident beam power to a value below 3.0 
kW/cm2. Fig. 2 shows the preliminary design of a three -beam 
heatsink. 
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BEAM 
DIRECTIONS 

Fig. 2-Preliminary design of a three beam heat sink. 

The anode of the power tube, located inside the cathode, consists of 
72 identical sections, each with its own cooling channel. The cathode also 
consists of 72 sections, which are heater sections. These heater sections 
direct the electron beam radially inward toward the slots between the 
anode sections, as shown in Fig. 3; the coolant is distributed by a mani- 
fold at the end of each anode section. 

Two basic approaches to power -tube section design were analyzed: 
1. A thin -wall high thermal -conductivity design with a high coolant 

requirement. 
2. A heat -storing energy -integrating design having a low coolant re- 

quirement. 
The thin -wall device is essentially suited for dc use while the energy - 
integration device is pulse -length limited. The beam dump, like the 
power -tube anode, is pulse operated, and several alternative fin designs 
were also analyzed for it. Thermally -induced stresses had to be consid- 
ered in both the power -tube anode and the beam dump as a design lim- 
itation. This paper describes the analyses, temperature profiles, and 
thermally -induced stresses for both structures. 
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2. Twenty -Five -Megawatt Power Tube Anode Analysis 

There were two alternatives in the power -tube design: 
1. A copper low -temperature fast -heat anode section with a low thermal 

inertia and low lag (Fig. 4a). 
2. A high -temperature long -thermal -path high -thermal -inertia energy 

integrator having a lower coolant requirement (Fig. 5a). 

Both alternatives require a large angle of incidence to distribute the beam 

flux because beam density is far too high for perpendicular impinge- 
ment. 

It was necessary to predict the following for each design: 
1. The transient temperature profile of the surface and interior 

points. 
2. The cyclic thermal stress necessary to predict fatigue failure for a 

pulsed device. 
3. The transient heat flow across the coolant boundary. A coolant 

system can be specified to prevent a critical heat flux (CHF) burnout 
condition. 

4. The effect of material and manufacturing tolerances. The models 
were built with and without a 0.02 -inch beam -to -anode misalign- 
ment and with a variation of individual beam flux of 30% as a result 
of differences in heater-cathode spacing. 

The large general-purpose finite element code ANSYS was used in 

the analysis because of the ease it provides in the handling of transient 
thermal and thermal stress problems, and because of its ability to express 
the material properties as a function of temperature and convection 
coefficients as a function of wall temperature. For the calculations, STIF 
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Fig. 4b-Finite element model of a thin wall copper anode section. 

55, which is a quadrilateral nonlinear element having conduction and 
convection capabilities, was used. 

The finite element models for two of the 72 identical sections of the 
two design alternatives are shown in larger scale in Figs. 4(b) and 5(b). 
Each line intersection is a node at which a transient temperature (one 
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Fig. 7-Calculated thermal stress for the copper anode model shown in Fig. 4b. 

for each time step) is obtained for each element. The values at selected 
nodes are shown and represent temperatures calculated from the heat 
input, material properties, and thermal coefficients using the ANSYS 
program and a finite -element model of the structure. 

Results of the finite element analysis are shown in Figs. 6 through 8. 
The thin copper anode (Figs. 4(a) and (b)) reaches steady state in less 
than 0.4 second, as shown in Fig. 6, indicating that it is pulse -length in- 
dependent, but nonetheless experiences cyclic thermal -induced stress. 
The energy -integration design (Fig. 5) is pulse -length dependent, but 
heat flow into the coolant is integrated over a longer time period, as also 
shown in Fig. 6. Peak heat flow occurs approximately two seconds after 
a pulse turn off (i.e., at three seconds in Fig. 6). 

The thin -wall copper anode (Fig. 4) reaches a maximum temperature 
of 234°C. In contrast, the molybdenum petal anode of Fig. 5 is heated 
to a maximum temperature of 1390°C. These temperatures reflect the 
differences in thermal properties of the materials as well as the proximity 
of the coolant water to the incident electron beam. 

The calculated thermally induced stresses are shown for the copper 
anode in Fig. 7 and for the molybdenum energy -integration anode in Fig. 
8. The relatively low temperature gradient in the copper anode none- 
theless results in tensile stresses at the water interface of up to 8860 psi, 
which is near the yield strength for oxygen -free, high -conductivity copper 
at room temperature.' 

The stress results shown in Fig. 8 were measured at the end of the 
second pulse, and represent the maximum stress in the body of the petal. 
In the figure, the stresses range from 10,013 psi tensile at the mid -plane 
to 19,500 psi compressive at the incident beam surface. However, the 

-13,365 psi -18,266 psi -14,58o -19,500 psi 

+585Opsi, +826 ps, +9804 psi +10,03psi +6114 psi 

Fig. 8-Calculated surface stresses at time = 31.0 seconds for molybdenum petal. 
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strength of the molybdenum decreases significantly only above 800°C; 

at 1093°C the yield stress is 20,000 psi.' Peak stresses at the coolant 
boundary appear sometime later. 

3. Beam -Dump Analysis 

The beam -dump analysis can be separated into the following sub - 
analyses: 
1. Analysis of models of individual fins to determine fin efficiency, with 

the convection film coefficient a function of temperature. 
2. Analysis of models of test section used in a vacuum -diode test. 
3. Analysis of models of a proposed heat dump to be used for 

heatsinking the neutral beam in the Tokamak Fusion Test Reac- 
tor. 

4. Analysis of alternative designs incorporating tungsten -clad copper 
sections. 

3.1 Fin Design 

The goal in selecting an optimum fin configuration was to minimize local 

heat flux into the coolant to keep wall temperatures low and thereby 
reduce the likelihood of them reaching a critical heat flux with a resultant 
burnout. The point of union of the fin with the main structure is par- 

ticularly vulnerable; the copper fins project into the coolant channel of 
the beam -dump section. The several different fin and plate sections 
considered for analysis are shown in Fig. 9. The reason for the selection 
of CDA alloy #360 (brass) for the laboratory test specimens was to 
match the electrical conductivities of the test specimens to the capa- 

bilities of the power supply in the joule heating -water cooling experi- 
ments.2 The analysis was done using OFHC copper as the beam -dump 
material. Since the vacuum diode was a bombarded instead of a joule - 

heated section, it was made of copper. 
The pivotal assumption used in these calculations is the effective 

convection film coefficient at the coolant/wall interface. The finite ele- 

ment method permits the use of unique material properties and film 

coefficients for each element, and thus predicts the idealized heat -ex- 

change situation at each surface without consideration of communication 
with neighboring surfaces. In practice, however, there is direct com- 

munication between local surfaces. For example, bubbles streaming from 

the root area of the fins as a result of nucleate boiling will change the film 

coefficients of the surfaces along the sides of the fins. 

The convection coefficients chosen are taken from work done on round 
tubes by T. Dormer, Jr. and A. E. Bergles3 at the Massachusetts Institute 
of Technology. The particular curve choosen is for a 0.094 -inch diameter 
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Fig. 11-Finite element temperature and heat flow results for a 0.050 -inch thick copper 

section with a 0.025 X 0.025 inch square fin. 
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point near the coolant exit will make h a function of Tw. The ANSYS 
finite element code permits h to be expressed as a function of wall tem- 
perature. Fig. 10 is the curve of convection coefficient as a function of 
wall temperature used in the analysis. 

Temperature and pressure conditions will vary along the length of a 
long, thin coolant channel. Lower pressure near the exit will result in a 
lower coolant saturation temperature (T4Ot) which, in turn, results in 
different convection film coefficients and wall temperatures. The con- 
ditions selected for fin analysis represent those near the coolant exit, 
where failure is most likely to occur. 

Transient thermal solutions were run on four fin and body -section 
types, as shown in Figs. 11 through 14. The solutions were allowed to run 
to steady state with an input heat flux of 1462 watts/cm2. Steady state 
in all cases occurred in less than 0.4 second, meaning that a full ther- 
mal -stress cycle will be experienced for each neutral beam pulse. 

Fig. 11 shows results obtained when a section of configuration A was 
bombarded with 1463 watts/cm2 while the coolant was maintained at 
121°C. Fig. 12 shows the results of an analysis of a section of configura- 
tion A with a double plate thickness on the bombarded side. The main 

POWER DENSITY IN 

1463 W/cm2 

251C 
¡- s- 

_1 _I -L- Í 1 I -r- fi -r 
--L -I I-- t- - 
--I--I--1-- 

I 

I 

- -i - -1- --- 
1 

I --1-,- T -- 
I 

155C POWER OUT - -I- - -"--------906 w/c62 
15RC i 

-I--....-____________631 W/cm2 
wATERTEMPERATURE121C I ' _.1- _ 4e9 w/cm2 

.050" I s -j- 
. 

1235C 

356 w/cm2 

279 w/cm2 

260 w/cm2 

Fig. 13-Finite element temperature and heat flow results for a 0.10 -inch thick copper section 
with a 0.050 X 0.025 -inch fin. 
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Fig. 14-Finite element temperature and heat flow results for a 0.050 -inch wide by 0.050 -inch 

high triangular fin. 

difference between Figs. 11 and 12 is that the bombarded surface tem- 

perature in Fig. 12 increases to 225°C from the 208°C value obtained 
for the thinner plate with the same fin. Fig. 13 shows the results for a 

0.100 -inch -thick plate and 0.050 -inch -long fin. This design results in a 

heat -flux density of 906 watts/cm2 at the root of the fin, which is a sig- 

nificantly lower value than for the shorter fin shown in Fig. 12. The 

bombarded -wall temperature in both cases remains about the same. 

Fig. 14 shows the results of an analysis of a plate with a triangular fin 

designed to provide a coolant channel with the same cross-sectional area 

as the equivalent C configuration shown in Fig. 13. If Fig. 13 is compared 

with Figs. 11, 12, and 14, it is apparent that configuration C presents the 
most attractive combination of low temperature for the bombarded wall 

and low heat flux in the root area of the fin (906 watts/cm2 for configu- 

ration C versus 976 watts/cm2 for the triangular design). A fin longer than 
0.050 -inch would provide marginal gains in exchange for a higher cool- 

ant -flow rate. For these reasons, combined with other laboratory results,2 

configuration C was chosen for the eight -channel seven -fin construction 
operated as the plate anode in the vacuum diode test. 
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Fig. 15-Transient temperature curves for the section and fin configuration shown in Fig. 
13 (a configuration type "C" fin). 

Fig. 15 shows the transient temperature at several points in a plate 
of configuration C. Steady state occurs in approximately 0.3 seconds, 
indicating that this design is independent of pulse length or repetition 
rate for pulses longer than 0.3 second. The design is thus capable of op- 
erating as an eight megawatt dc heat pump. 

3.2 Analysis of a Diode Test Section 

Figs. 16, 17, and 18 show the finite element model, the isostress plot, and 
the displacement plot, respectively, for the 1 -cm -wide by 30 -cm -long 
test section that was attached to a stainless -steel backplate (not shown) 
and bombarded with a 2.0 kW/cm2 electron beam while loaded with a 
maximum internal pressure of 435 psi. The analysis was run to study the 
stress situation at the supports (points A and B, Fig. 16) where the 
bombarded section is attached to the backplate. 

Fig. 16 shows the temperature profile for the diode test section while 
the section was undergoing a 2.0 kW/cm2 electron beam bombardment; 
the coolant temperature was 152°C. The temperature distribution from 
the bombarded surface through the fin and into the coolant is shown, 
the root temperature is 207°C, the tip temperature is 168°C. The mea- 
surements are similar for the other fins in the structure. Fig. 1'7 is a 
computer -plotted isostress diagram of the diode section showing that 
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Fig. 16-Finite element model of a 0.100 -inch thick by 1.0 cm wide copper beam dump 

section with configuration "C" fins. 

the maximum principal stress of 5289 psi tension occurs in the support, 

the critical limiting part of the structure. Fig. 18 is a normalized dis- 

placement plot for these thermal conditions plus a 435 psi internal 

pressure load. The figure shows that the maximum displacement occurs 

in the center, directly between the supports, as expected. Based on these 

calculations, the supports were lengthened to provide sufficient strain 

isolation and thereby reduce the stress in this member. 

3:3 Analysis of a Proposed Heat Dump 

The finite element analysis discussed above, and the experiments, were 

used to propose a conceptual full-scale model of an eight -megawatt heat 
dump for the Tokamak Fusion Test Reactor. 
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Fig. 17-Maximum principle stress isostress profile of the diode section with pressure and 

thermal loads. 
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Fig. 18-Thermal displacement profile of the diode test section. 

The ideal situation, of course, would be to build the heat dump from 
six large copper slabs brazed to stainless steel backplates with coolant 
channels between, as shown in Fig. 2. However, because the copper plate 
is heated on the outside, bombarded surface only, the assembly behaves 
as a bimetal strip with comparable thermal stress and deflection. 
Thermal stress and deflection would be huge for a one-piece assembly; 
therefore, the width of each section is determined by the allowable stress 
and out -of -plane deflection of each section. The sections are then as- 
sembled, venetian -blind style, as shown in Fig. 2, being careful to prevent 
edges of individual sections from receiving direct perpendicular bom- 
bardment. 

It is important to note that the analysis data shown in Figs. 19 through 
23 has not been substantiated by experiment. The decision to choose for 
analysis a section with three divisions, as shown in Fig. 19, was based 
upon simplified calculations and engineering judgment. Each of the three 
divisions contains seven fins and eight channels, as did the section of 
configuration C used in the vacuum diode test described above. 

Fig. 19 shows the finite element model of the proposed section. All 
analysis on this section was done assuming a thermal load of 2.0 kW/cm2 
and an internal pressure load of 250 psi. Fig. 20 shows computer -plotted 
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Fig. 19-Finite element model of a proposed beam dump with three sections and four 
supports. 

RCA Review Vol. 39 December 1978 713 



(a) 
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MAXIMUM STRESS 

(b) 

Fig. 20-Stress intensity isostress plots of two models of the proposed beam dump. 

stress -intensity isostress plots of two variations of the structure, one with 
four supports to the stainless steel backplate, and one with seven sup- 
ports. The maximum stresses occur near the attachment point of the post 
to the stainless steel plate; the detailed stress distribution is shown in 
Figs. 21 and 22. 

Fig. 21, which is a magnified isostress plot of the four -support model, 
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Fig. 21-A magnified isostress plot of model 1, Fig. 20. 
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Fig. 22-A magnified isostress plot of model 2, Fig. 20. 
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shows that the maximum stress is 15,869 psi tension in the stainless steel. 
Fig. 22 is an identical plot of the seven -support model. An examination 
of both of these figures shows that the stress is highest where the sup- 
ports attach to the steel backplate. There are methods for minimizing 
this stress, such as lengthening the supports, but this step would increase 
the coolant requirement. A solution to this could be to braze the supports 
into troughs milled into the backplate. 

Fig. 23 shows relative displacement for the four -support model. It is 

- - - - - I I1 11 11 1 I 
- 

0.100° COPPER ON 
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Fig. 23-Displacement plot of the proposed beam dump with 2.0 kW/cm2 beam bom- 
bardment and 250 psi internal pressure (typical of conditions near the coolant 
entrance). 
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very important to know the magnitude of the out -of -plane displacement 
prior to building the full-size array so that the individual sections can 
be positioned to prevent shading or open cracks. Finally, before a full-size 

structure is built and tested, the alternative designs will receive a thor- 
ough finite -element analysis. 

3.4 Analysis of a Tungsten -Clad Copper Design 

As mentioned above, the limitation on the width of each section is de- 
termined by the allowable stress and out -of -plane deflection. The ideal 

material would have high thermal conductivity and negligible thermal 
expansion. Materials such as tungsten and molybdenum appear to 
present a favorable trade-off between coefficient of thermal expansion 
(one-fourth that of copper), thermal conductivity, and yield strength 
when compared with OFHC copper. 

Copper is, by far, the most efficient fin material, but it has a low yield 

strength and a low melting temperature. Therefore, a tungsten -clad 

copper structure employing different combinations of material thickness 
was analyzed. The stress results for 0.02 -inch of tungsten clad on 

0.012 -inch of copper are shown in Fig. 24. The results show a high sheer 
stress between the materials, which could lead to delamination. It should 
be pointed out that, at present, some power devices being manufactured 
make use of tungsten strips brazed to a copper plate for handling high 

electron -beam flux densities. Accordingly, this composite -materials 
approach would appear to be worth additional analyses. 
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Fig. 24-Isostress plot of a tungsten -clad copper design. 
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CONCLUSIONS 

(1) The finite element models provided a means for studying design 
alternatives on a theoretical basis prior to a commitment on materials 
and construction; the result was the elimination of some costly, time- 
consuming experiments. In addition, the models provided some guidance 
for the experiments which were run, and vice versa. The switch tube has 
been successfully built and tested. 
(2) A conceptual design for the beam dump has been developed with 
enough analytical assurance to justify building a full-size structure. 
(3) The possibility exists for using a combination of materials, such 
as a thin tungsten plate with copper -clad fins, in the coolant channel. 
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Patents Issued to RCA Inventors Third Quarter 1978 

July 

Z. M. Andrevskl Flat Display Device with Beam Guide (4,101,802) 
A. E. Bell, R. A. Bartolini, and A. Bloom Overcoat Structure for Optical VideoDisc (4,101,907) 

S. Berkman and D. B. Irish Susceptor for Heating Semiconductor Substrates (4,099,041) 

S. Berkman, G. W. Cullen, M. T. Duffy, and K. Kim Apparatus Improvements for Growing Single Crys- 

talline Silicon Sheets (4,099,924) 
B. W. Beyers, Jr. Timekeeping Apparatus with Power Line Dropout Provisions (4,099,372) 
A. Bloom and H. Sorkin Method to Provide Homogeneous Liquid Crystal Cells Containing a Dyestuff 

(4,098,301) 
T. L. Credelle Flat Display Device with Beam Guide (4,103,204) 
T. L. Credelle Flat Display Device with Beam Guide (4,103,205) 
G. Denes Memory Cells (4,103,185) 
J. J. DiPiazza Nonreflecting Photoresist Process (4,102,683) 
R. A. Dischert, A. J. Banks, and R. S. Hopkins, Jr. Television Synchronizing Apparatus (4,101,926) 

J. G. Endriz, J. A. Rajchman, and J. A. Van Raalte Parallel Vane Structure for a Flat Display Device 

(4,099,085) 
F. C. Farmer, Jr. Method and Apparatus for Measuring Cathode Emission Slump (4,101.823) 

J. S. Fuhrer and E. O. Keizer Method for Forming a Narrowed -Electrode Pickup Stylus for VideoDisc 

Systems (4,098,030) 
R. A. Gange Uniform Filament and Method of Making the Same (4,100,449) 
P. E. Befell Side Pincushion Distortion Correction Circuit (4,101,814) 

S. Hagino Turntable Speed Control System (4,100,465) 
W. E. Ham Method for Determining Whether Holes in Dielectric Layers are Opened (4,103,228) 

J. M. Hammer and C. C. Neil Process for Forming an Optical Waveguide (4,100,313) 

L. D. Huff Automatic Disc Wiping Apparatus (4,099,724) 
H. Khajezadeh and S. C. Ahrens Monolithic Resistor for Compensating Beta of a Lateral Transistor 

(4,100,565) 
M. A. Leedom VideoDisc Handling System for a VideoDisc Player (4,098,511) 
A. L. Limberg Switchable Current Amplifier (4,103,246) 
W. D. Masterton Shadow Mask Color Picture Tube Having a Mosaic Color Screen with Improved Tol- 

erances (4,099,187) 
A. Miller Optical Coupler (4,102,560) 
G. I. Morton Complementary -Symmetry Amplifier (4,103,188) 
S. A. Ochs Wafer Mounting Structure for Pickup Tube (4,103,203) 
J. 011endorf Protective Circuit for MOS Devices (4,100,561) 
K. D. Peters Guided Beam Flat Display Device with Focusing Guide Assembly Mounting Means 

(4,099,087) 
B. D. Rosenthal and A. G. Dingwall Quasi -Static Inverter Circuit (4,103,183) 

W. Rosnowski Method of Fabricating a Semiconductor Device (4,099,997) 
S. Shwartzman Method and Apparatus for Detecting Ultrasonic Energy (4,099,417) 
J. L. Smith Eccentric Convergence Apparatus for In -Line Beam Cathode Ray Tubes (4,100,518) 

J. L. Vossen, Jr., G. F. Nichols, and F. R. Nyman Adherence of Metal Films to Polymeric Materials 

(4,101,402) 
C. F. Wheatley, Jr. Shunt Voltage Regulator (4,103,219) 
D. H. Willis Horizontal Deflection Circuit with High Voltage Selection Capability (4,101.815) 

J. P. Wittke Semiconductor Laser Having Fundamental Lateral Mode Selectivity (4,100,508) 

O. M. Woodward Dual Channel Transmission of Microwave Power Through an Interface of Relative 

Rotation (4,103,262) 

August 

J. G. Amery and T. W. Burrus Noise Reduction Apparatus (4,110,784) 
W. G. Anderson Quiescent Biasing of R -F Power Transistors for Other Than Class A Operation 

(4,105,944) 
R. L. Baker, J. D. Padilla, C. M. Mahoskl, and H. R. Ronan, Jr. Chuck for Use in the Testing of Semi- 

conductor Wafers (4.104,589) 
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O. H. Bismarck Pulse Staggering Circuit (4,109.209) 
A. Bloom and L. K. Hung Liquid Crystalline 4-Cyano-or 4-Nitrobenzylidene-4'-(N,N-Dialkylamino)-1- 
Aminoazabenzene Dyes (4,105,654) 
R. R. Brooks GTO Ignition Circuit (4,109,632) 
W. L. Cable, D. S. Binge, and R. F. Korosec Adjustment Device (4,108,407) 
J. D. Callaghan Rotator with Remote Indicator and Self -Synchronization (4,109,191) 
J. A. Castellano and M. T. McCaffrey Liquid Crystal Cell (4,108,793) 
C. A. Catanese, J. G. Endriz, and S. A. Keneman Electron Multiplier with Switchable Beam Confinement 
Structure (4,109,178) 
D. J. Channin Matrix Address System Using Erase Operation (4,109,242) 
H. H. Chapman Electronic Mail Box (4,106,060) 
C. A. Clark and K. C. Adam Clamping Circuit (4,109,166) 
B. R. Clay and D. A. Gore Deflection -Type Modulator of Laser Beam for Communications 
(4,105,915) 
L. S. Cosentino, J. G. Endriz, and G. F. Stockdale Electrical Connection Between Conductors on Spaced 
Plates (4,109,299) 
A. T. Crowley Pulse Wave Phase and Frequency Detector (4,105,947) 
A. G. Dingwall Voltage Controlled Oscillator (VCO) Employing Nested Oscillating Loops (4,105,950) 
R. A. Dischert and J. M. Walter Clock Generator for Video Signal Processing (4,110,785) 
C. A. Elliott and L. D. Huff Package Actuated Record Extracting Mechanism for a VideoDisc Player 
(4,109,919) 
W. W. Evans Lockup Inhibiting Arrangement for a Phase Locked Loop Tuning System (4,110,693) 
G. Forster and W. Bohringer Horizontal Deflection Circuit with Auxiliary Power Supply (4,104,569) 
M. T. Gale and J. Kane Fabrication of Diffractive Subtractive Filter Embossing Master (4,108,660) 
R. A. Geshner and J. Mitchell, Jr. Method for Removing Defects from Chromium and Chromium Oxide 
Photomasks (4,105,468) 
R. H. Godfrey and A. M. Morrell Cathode -Ray Tube Having Apertured Mask (4,109,177) 
A. M. Goodman MIS Readout Device with Dielectric Storage Medium (4,106,107) 
N. F. Gubitose and R. A. James Machine for Straightening the Wire Leads of a Device (4,106,532) 
W. J. Hannan Token and Reader for Vending Machines (4,108,367) 
J. G. N. Henderson and W. M. Wine Phase Locked Loop Television Tuning System (4,106,059) 
M. D. Holbrook and R. P. Fillmore Voltage Multiplier Circuit (4,106,086) 
R. S. Hopkins, Jr., R. A. Dischert, and A. J. Banks Memory Read/Write Organization for a Television 
Signal Processor (4,109,276) 
L. A. Jacobus, Jr. Method of Making an Insulated Gate Field Effect Transistor by Implanted Double 
Counterdoping (4,108,686) 
E. A. James and P. Kuznetzoff Method of Depositing or Repairing a Patterned Metal Layer on a Substrate 
(4,107,351) 
E. Jellinek System for Automatic Vehicle Location (4,107,689) 
H. C. Johnson FM-CW Radar Ranging System (4,106,020) 
G. S. Kaplan Digitally Processed Radar Speed Sensor (4,107,680) 
G. S. Kaplan Clutter Free Communications Radar (4,109.247) 
K. Katagi Polar to Rectangular Coordinate Converter (4,106,021) 
E. O. Keizer Method for Forming Keel -Tipped Stylus for VideoDisc System (4,104,832) 
H. Khajezadeh Integrated Circuit Protection Device Comprising Diode Having Large Contact Area in 
Shunt with Protected Bipolar Transistor (4,106,048) 
C. M. Kudsia, L. A. Keyes, and H. J. Moody Traffic Switching in Communications Satellites 
(4,109,202) 
A. J. Leidich Monostable Circuit (4,105,901) 
A. W. Levine, G. Kaganowicz, and P. Datta Electro -Optic Devices (4,105,298) 
N. F. Maxemchuk Digital Sampling Rate Conversion of Color TV Signal (4,106,053) 
N. F. Maxemchuk Error Detection and Correction (4,110,735) 
J. I. Pankove Amorphous Silicon -Amorphous Silicon Carbide Photovoltaic Device (4,109,271) 
R. P. Parker Combined Blanking Level and Kinescope Blas Clamp for a Television Signal Processing 
System (4,110,787) 
J. C. Peer and D. W. Luz Television Raster Width Regulation Circuit (4,104,567) 
B. M. Pradal Audio Signal Processor (4,110,692) 
C. F. Pulse Record (0248,753) 
R. M. Rast Frequency Counter for Television Tuning System (4,109.283) 
C. W. Reno and D. G. Herzog On -Axis Film Scanner with Reflected Illumination (4,105,926) 
G. A. Riley Electronic Wristwatch (4,103,483) 
J. J. Risko Method for Making Schottky Barrier Diodes (4,110,488) 
A. Rosen and E. Mykietyn Electronically Tunable Microwave Frequency FET Discriminator 
(4,110, 700) 
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R. C. Shambelan and C. W. Lindsley Machine for Changing the Spacing of a Plurality of Wafers 

(4,108.323) 
E. K. Sichel Electrochromic Cermet Material and Device Including the Same (4,110,259) 

V. Stachejko Amplitude Balanced Diode Phase Shifter (4,105,959) 

R. G. Stewart and S. S. Eaton, Jr. Sense Circuit Employing Complementary Field Effect Transistors 

(4,107,556) 
H. J. Wolksteln Frequency Synthesizer with Rapidly Changeable Frequency (4,105,948) 

September 

A. A. Ahmed Switchable Current Amplifiers (4,117,417) 
A. A. Ahmed Ground Fault Detecting Apparatus Including Current -Responsive Threshold Detection 

Circuitry (4,114,089) 
D. E. Carlson and C. R. Wronski Amorphous Silicon Photovoltaic Device Having an Insulating Layer 

(4,1 17,506) 
C. A. Catanese, J. B. Harrison, Jr., and N. L. Lindburg Electron Multiplier with High Energy Electron 

Filter (4,115,719) 
J. J. Chinery Method of Testing Semiconductor Devices (4,114,096) 

B. R. Clay and G. T. Burton Double Modulation Holographic Recording Technique (4.116,526) 

W. R. Curtice Triggered Burst Generator (4,114,051) 
R. V. D'Aieilo Photovoltaic Device Having an Extended PN Junction (4,112,457) 

R. J. D'Amato Process of Fabricating a Cathode Ray Tube (4,112,562) 
W. Denhollander Transformer Arrangement for Synchronously Switched Vertical Deflection System 

(4,117,380) 
R. DeStephanis Record Support and Alignment Apparatus for a VideoDisc Player (4.113,262) 

J. G. Endriz Electron Beam Oscillation Compensation Method (4,115,724) 

R. D. Faulkner Electron Discharge Tube Having a Cup -Shaped Secondary Electron Emissive Electrode 

(4,112,325) 
R. D. Faulkner Non -Uniform Dynode Mesh for an Electron Discharge Tube (4,112,326) 

E. R. Ganssle, R. J. Williams, and R. R. Scott Mounting Structure (4,116,263) 

J. Goel, S. Y. Narayan, and I. Drukier Method of Making a Submicrometer Aperture in a Substrate 

(4,117,301) 
G. B. Herzog Position Encoder Employing Charge Transfer Circuit (4,114,035) 

R. Hollingsworth Unbalanced Sense Circuit (4,114,055) 
M. V. Hoover Bridge Amplifiers Employing Complementary Transistors (4,117,415) 

G. W. Hunka Optical Cursor Tracking Correction System (4,114,034) 
M. A. Kalfus Circuit for Single -Line Control of GTO Controlled Rectifier Conduction (4,115,707) 

M. A. Kalfus and H. W. Becke Switching Circuit (4,117,350) 
M. A. Kalfus and D. M. Baugher Transistor Switching Circuit (4,117,351) 

G. Katz Method of Assembling Components on Printed Circuit Boards (4,113,524) 
J. D. Levine Device Having Thermionic Cathode Heated by Field -Emitted Electrons (4,115,720) 

S. G. Liu Fast -Switching Pulse Modulator (4,115,708) 

F. J. Marlowe and C. H. Anderson Modular Type Guided Beam Flat Display Device (4,117,368) 

L. Muhllelder and R. B. Hogen Magnetic Torquing System for Changing the Spin Rate of an Orbiting 

Satellite (4,114,841) 
R. W. Nosker Smooth Groove Formation Method Employing Spin Coating of Negative Replica of Inscribed 

Disc (4,113,897) 
G. H. Olsen, T. J. Zamerowski, and C. J. Buiocchi Vapor Phase Growth Technique of III -V Compounds 

Utilizing a Preheating Step (4,116,733) 
M. Packer Organic Welding Flux Composition (4,115,157) 

J. I. Pankove and M. A. Lampert Method of Passivating a Semiconductor Device by Treatment with 

Atomic Hydrogen (4,113,514) 
J. I. Pankove and F. J. Marlowe Solid State Oscilliscope (4,114,095) 

S. Ponczak and J. A. Olmstead Method of Forming a Curved Implanted Region in a Semiconductor Body 

(4,113.516) 
O. H. Schade, Jr. Current Mirror Amplifiers with Programmable Current Gains (4,117,416) 

J. L. Smith Static Convergence Device Including Magnetic Corrector Apparatus (4.117,433) 

D. H. Willis Inrush Current Start-up Circuit for a Television Receiver Including a Start-up Decoupling 

Circuit (4,112,465) 
D. H. Willis High Voltage Protection Circuit Having Predictable Firing Point (4,114,072) 
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